Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Crit Care ; 27(1): 266, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37407986

RESUMEN

BACKGROUND: There is a clear relationship between quantitative measures of fitness (e.g., VO2 max) and outcomes after surgical procedures. Whether or not fitness is a modifiable risk factor and what underlying biological processes drive these changes are not known. The purpose of this study was to evaluate the moderate exercise training effect on sepsis outcomes (survival) as well as the hepatic biological response. We chose to study the liver because it plays a central role in the regulation of immune defense during systemic infection and receives blood flow directly from the origin of infection (gut) in the cecal ligation and puncture (CLP) model. METHODS: We randomized 50 male (♂) and female (♀) Sprague-Dawley rats (10 weeks, 340 g) to 3 weeks of treadmill exercise training, performed CLP to induce polymicrobial "sepsis," and monitored survival for five days (Part I). In parallel (Part II), we randomized 60 rats to control/sedentary (G1), exercise (G2), exercise + sham surgery (G3), CLP/sepsis (G4), exercise + CLP [12 h (G5) and 24 h (G6)], euthanized at 12 or 24 h, and explored molecular pathways related to exercise and sepsis survival in hepatic tissue and serum. RESULTS: Three weeks of exercise training significantly increased rat survival following CLP (polymicrobial sepsis). CLP increased inflammatory markers (e.g., TNF-a, IL-6), which were attenuated by exercise. Sepsis suppressed the SOD and Nrf2 expression, and exercise before sepsis restored SOD and Nrf2 levels near the baseline. CLP led to increased HIF1a expression and oxidative and nitrosative stress, the latter of which were attenuated by exercise. Haptoglobin expression levels were increased in CLP animals, which was significantly amplified in exercise + CLP (24 h) rats. CONCLUSIONS: Moderate exercise training (3 weeks) increased the survival in rats exposed to CLP, which was associated with less inflammation, less oxidative and nitrosative stress, and activation of antioxidant defense pathways.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Sepsis , Ratas , Masculino , Femenino , Animales , Ratas Sprague-Dawley , Hígado , Transducción de Señal , Superóxido Dismutasa , Modelos Animales de Enfermedad
2.
Front Cardiovasc Med ; 9: 711421, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35928940

RESUMEN

Introduction: Oxidative phosphorylation is an essential feature of Animalian life. Multiple adaptations have developed to protect against hypoxia, including hypoxia-inducible-factors (HIFs). The major role of HIFs may be in protecting against oxidative stress, not the preservation of high-energy phosphates. The precise mechanism(s) of HIF protection is not completely understood. Materials and Methods: To better understand the role of hypoxia-inducible-factor-1, we exposed heart/myocardium cells (H9c2) to both normoxia and hypoxia, as well as cobalt chloride (prolyl hydroxylase inhibitor), echniomycin (HIF inhibitor), A2P (anti-oxidant), and small interfering RNA to beclin-1. We measured cell viability, intracellular calcium and adenosine triphosphate, NADP/NADPH ratios, total intracellular reactive oxidative species levels, and markers of oxidative and antioxidant levels measured. Results: Hypoxia (1%) leads to increased intracellular Ca2+ levels, and this response was inhibited by A2P and echinomycin (ECM). Exposure of H9c2 cells to hypoxia also led to an increase in both mRNA and protein expression for Cav 1.2 and Cav 1.3. Exposure of H9c2 cells to hypoxia led to a decrease in intracellular ATP levels and a sharp reduction in total ROS, SOD, and CAT levels. The impact of hypoxia on ROS was reversed with HIF-1 inhibition through ECM. Exposure of H9c2 cells to hypoxia led to an increase in Hif1a, VEGF and EPO protein expression, as well as a decrease in mitochondrial DNA. Both A2P and ECM attenuated this response to varying degrees. Conclusion: Hypoxia leads to increased intracellular Ca2+, and inhibition of HIF-1 attenuates the increase in intracellular Ca2+ that occurs with hypoxia. HIF-1 expression leads to decreased adenosine triphosphate levels, but the role of HIF-1 on the production of reactive oxidative species remains uncertain. Anti-oxidants decrease HIF-1 expression in the setting of hypoxia and attenuate the increase in Ca2+ that occurs during hypoxia (with no effect during normoxia). Beclin-1 appears to drive autophagy in the setting of hypoxia (through ATG5) but not in normoxia. Additionally, Beclin-1 is a powerful driver of reactive oxidative species production and plays a role in ATP production. HIF-1 inhibition does not affect autophagy in the setting of hypoxia, suggesting that there are other drivers of autophagy that impact beclin-1.

3.
Biol Reprod ; 107(5): 1345-1359, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-35986894

RESUMEN

TAR DNA binding protein of 43 kD (TDP-43) is an evolutionarily conserved, ubiquitously expressed transcription factor and RNA-binding protein with major human health relevance. TDP-43 is present in Sertoli and germ cells of the testis and is aberrantly expressed in the sperm of infertile men. Sertoli cells play a key role in spermatogenesis by offering physical and nutritional support to male germ cells. The current study investigated the requirement of TDP-43 in Sertoli cells. Conditional knockout (cKO) of TDP-43 in mouse Sertoli cells caused failure of spermatogenesis and male subfertility. The cKO mice showed decreased testis weight, and low sperm count. Testis showed loss of germ cell layers, presence of vacuoles, and sloughing of round spermatids, suggesting loss of contact with Sertoli cells. Using a biotin tracer, we found that the blood-testis barrier (BTB) was disrupted as early as postnatal day 24 and worsened in adult cKO mice. We noted aberrant expression of the junction proteins connexin-43 (gap junction) and N-cadherin (ectoplasmic specialization). Oil Red O staining showed a decrease in lipid droplets (phagocytic function) in tubule cross-sections, Sertoli cells cytoplasm, and in the lumen of seminiferous tubules of cKO mice. Finally, qRT-PCR showed upregulation of genes involved in the formation and/or maintenance of Sertoli cell junctions as well as in the phagocytic pathway. Sertoli cells require TDP-43 for germ cell attachment, formation and maintenance of BTB, and phagocytic function, thus indicating an essential role for TDP-43 in the maintenance of spermatogenesis.


Asunto(s)
Semen , Células de Sertoli , Animales , Masculino , Ratones , Barrera Hematotesticular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células de Sertoli/metabolismo , Espermátides/metabolismo , Espermatogénesis/genética , Testículo/metabolismo
4.
J Biol Chem ; 297(5): 101231, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34599968

RESUMEN

Meiotic arrest is a common cause of human male infertility, but the causes of this arrest are poorly understood. Transactive response DNA-binding protein of 43 kDa (TDP-43) is highly expressed in spermatocytes in the preleptotene and pachytene stages of meiosis. TDP-43 is linked to several human neurodegenerative disorders wherein its nuclear clearance accompanied by cytoplasmic aggregates underlies neurodegeneration. Exploring the functional requirement for TDP-43 for spermatogenesis for the first time, we show here that conditional KO (cKO) of the Tardbp gene (encoding TDP-43) in male germ cells of mice leads to reduced testis size, depletion of germ cells, vacuole formation within the seminiferous epithelium, and reduced sperm production. Fertility trials also indicated severe subfertility. Spermatocytes of cKO mice showed failure to complete prophase I of meiosis with arrest at the midpachytene stage. Staining of synaptonemal complex protein 3 and γH2AX, markers of the meiotic synaptonemal complex and DNA damage, respectively, and super illumination microscopy revealed nonhomologous pairing and synapsis defects. Quantitative RT-PCR showed reduction in the expression of genes critical for prophase I of meiosis, including Spo11 (initiator of meiotic double-stranded breaks), Rec8 (meiotic recombination protein), and Rad21L (RAD21-like, cohesin complex component), as well as those involved in the retinoic acid pathway critical for entry into meiosis. RNA-Seq showed 1036 upregulated and 1638 downregulated genes (false discovery rate <0.05) in the Tardbp cKO testis, impacting meiosis pathways. Our work reveals a crucial role for TDP-43 in male meiosis and suggests that some forms of meiotic arrest seen in infertile men may result from the loss of function of TDP-43.


Asunto(s)
Proteínas de Unión al ADN/deficiencia , Regulación de la Expresión Génica , Infertilidad Masculina/metabolismo , Profase Meiótica I , Epitelio Seminífero/metabolismo , Espermatocitos/metabolismo , Espermatogénesis , Animales , Proteínas de Unión al ADN/metabolismo , Femenino , Infertilidad Masculina/genética , Masculino , Ratones , Ratones Noqueados
5.
Front Aging Neurosci ; 12: 542421, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33088271

RESUMEN

OBJECTIVE: To establish a clinically relevant mouse model of perioperative delirium. METHODS: Aged C57BL/6J mice were tested at baseline in the Y-maze novel arm preference, buried food, simple discrimination task of the attentional set-shifting test, and open field tests. They were subsequently randomized to insult (anesthesia, surgery, and Intensive Care Unit environment) or control group. Insult-exposed mice received laparotomy under sevoflurane anesthesia, propofol sedation and exposure to intermittent lights, sounds and cage shaking. Controls did not receive anesthesia, surgery, or intensive care environment. All mice were tested in the Y-maze novel arm preference, buried food, attentional, and open field tests at the end of intensive care environment (0 h) and every 6 h up to 24 h. Mouse hippocampi were collected at 24 h for gene expression analyses. RESULTS: Surgery, anesthesia and Intensive Care environment decreased the entries in the Y-maze novel arm at 0 h (P = 0.001), 6 h (P < 0.001), 18 h (P = 0.002), and 24 h (P = 0.029). Insult exposure increased the latency to find a buried cereal reward at 18 h (P = 0.035) and 24 h (P = 0.027), and increased the trials to criterion in the reverse compound discrimination (P = 0.013) and extradimensional shift (P < 0.001) tasks of the attentional test. The overall incidence of delirium was 72% in A/S/I mice. Messenger RNA levels of synuclein alpha (-3.785 fold change relative to controls), Neurotrophic Receptor Tyrosine Kinase1 (-2.267), and syntaxin1a (-1.498) were decreased in the hippocampus of mice 24 h after insult exposure. Protein levels of syntaxin 1a (P = 0.012), Neurotrophic Receptor Tyrosine Kinase1 (P = 0.039), synuclein alpha (P = 0.017), phosphorylated synuclein alpha (P = 0.008), synaptophysin (P = 0.002), postsynaptic density protein 95 (P = 0.003), and microtubule-associated protein 2 (P = 0.013) were also decreased, relative to controls. CONCLUSION: Surgery, anesthesia and Intensive Care environment impaired mouse behaviors that depend on attention, memory, and thought organization. The changes were acute in onset and fluctuating in time. Mice with delirium exhibited decreased expression of key synaptic function-related genes. The behavioral changes induced by anesthesia, surgery, and Intensive Care environment in aged mice are consistent with the clinical features of human delirium, and support the use of this animal model for future mechanistic studies of perioperative delirium.

6.
Front Med (Lausanne) ; 7: 581082, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33392215

RESUMEN

Background: Hepatic dysfunction plays a major role in adverse outcomes in sepsis. Volatile anesthetic agents may protect against organ dysfunction in the setting of critical illness and infection. The goal of this study was to study the impact of Sepsis-inflammation on hepatic subcellular energetics in animals anesthetized with both Propofol (intravenous anesthetic agent and GABA agonist) and Isoflurane (volatile anesthetic i.e., VAA). Methods: Sprague-Dawley rats were anesthetized with Propofol or isoflurane. Rats in each group were randomized to celiotomy and closure (control) or cecal ligation and puncture "CLP" (Sepsis-inflammation) for 8 h. Results: Inflammation led to upregulation in hepatic hypoxia-inducible factor-1 in both groups. Rats anesthetized with isoflurane also exhibited increases in bcl-2, inducible nitric oxide synthase, and heme oxygenase-1(HO-1) during inflammation, whereas rats anesthetized with Propofol did not. In rats anesthetized with isoflurane, decreased mRNA, protein (Complex II, IV, V), and activity levels (Complex II/III,IV,V) were identified for all components of the electron transport chain, leading to a decrease in mitochondrial ATP. In contrast, in rats anesthetized with Propofol, these changes were not identified after exposure to inflammation. RNA-Seq and real-time quantitative PCR (qPCR) expression analysis identified a substantial difference between groups (isoflurane vs. Propofol) in mitogen-activated protein kinase (MAPK) related gene expression following exposure to Sepsis-inflammation. Conclusions: Compared to rats anesthetized with Propofol, those anesthetized with isoflurane exhibit more oxidative stress, decreased oxidative phosphorylation protein expression, and electron transport chain activity and increased expression of organ-protective proteins.

7.
Mol Neurobiol ; 55(1): 222-228, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28840475

RESUMEN

Recent evidence strongly supports the idea that common general anesthetics (GAs) such as isoflurane (Iso) and nitrous oxide (N2O; laughing gas), as well as sedative drugs such as midazolam are neurotoxic for the developing mammalian brain having deleterious effects on neural circuits involved in cognition, learning and memory. However, to date, very little is known about epigenetic mechanisms involved in GA-induced plasticity of synaptic transmission in the hippocampus, the main memory-processing region in the brain. Here, we used patch-clamp recordings of miniature inhibitory post-synaptic currents (mIPSCs) from hippocampal neurons in slice cultures exposed to the clinically relevant GA combination. We found that in vitro exposure to a combination of midazolam, 0.75% Iso, and 70% N2O for 6 h leads to lasting increase in frequency of mIPSCs, while amplitudes and kinetics of the events were spared. Importantly, co-application of entinostat (MS-275), a selective inhibitor of class I histone deacetylases (HDAC), completely reversed GA-induced synaptic plasticity. Furthermore, when given in vivo to P7 pups exposed to GA with midazolam, Iso and N2O for 6 h, MS-275 reversed GA-induced histone-3 hypoacetylation as shown by an increase in Ac-H3 protein expression in the hippocampus. We conclude that exposure to a combination of Iso with N2O and midazolam causes plasticity of mIPSCs in hippocampal neurons by epigenetic mechanisms that target presynaptic sites. We hypothesize that GA-induced epigenetic alterations in inhibitory synaptic transmission in the hippocampus may contribute to altered neuronal excitability and consequently abnormal learning and memory later in life.


Asunto(s)
Anestesia General/efectos adversos , Benzamidas/farmacología , Hipocampo/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Inhibición Neural/efectos de los fármacos , Piridinas/farmacología , Transmisión Sináptica/efectos de los fármacos , Animales , Animales Recién Nacidos , Femenino , Hipocampo/crecimiento & desarrollo , Masculino , Inhibición Neural/fisiología , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/fisiología
8.
Mol Reprod Dev ; 84(8): 675-685, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28600885

RESUMEN

TAR DNA-binding protein of 43 kDa (TDP-43) is an evolutionarily conserved, ubiquitously expressed, multi-functional DNA/RNA-binding protein with roles in gene transcription, mRNA splicing, stability, transport, micro RNA biogenesis, and suppression of transposons. Aberrant expression of TDP-43 in testis and sperm was recently shown to be associated with male infertility, which highlights the need to understand better the expression of TDP-43 in the testis. We previously cloned TDP-43 from a mouse testis cDNA library, and showed that it functions as a transcriptional repressor and regulates the precise spatiotemporal expression of the Acrv1 gene, which encodes the acrosomal protein SP-10, during spermatogenesis. Here, we performed immunoblotting and immunohistochemistry of the mouse testis using four separate antibodies recognizing the amino and carboxyl termini of TDP-43. TDP-43 is present in the nuclei of germ cells as well as Sertoli cells. TDP-43 expression begins in type B/intermediate spermatogonia, peaks in preleptotene spermatocytes, and becomes undetectable in leptotene and zygotene spermatocytes. Pachytene spermatocytes and early round spermatids again express TDP-43, but its abundance diminishes later in spermatids (at steps 5-8). Interestingly, two of the four antibodies showed TDP-43 expression in spermatids at steps 9-10, which coincides with the initial phase of the histone-to-protamine transition. Immunoreactivity patterns observed in the study suggest that TDP-43 assumes different conformational states at different stages of spermatogenesis. TDP-43 pathology has been extensively studied in the context of neurodegenerative diseases; its role in spermatogenesis warrants further detailed investigation of the involvement of TDP-43 in male infertility.


Asunto(s)
Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/metabolismo , Epitelio Seminífero/química , Epitelio Seminífero/metabolismo , Espermatogénesis/fisiología , Animales , Regulación de la Expresión Génica/genética , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL
9.
Anesthesiology ; 124(6): 1311-1327, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27028464

RESUMEN

BACKGROUND: Early postnatal exposure to general anesthesia (GA) may be detrimental to brain development, resulting in long-term cognitive impairments. Older literature suggests that in utero exposure of rodents to GA causes cognitive impairments in the first-generation as well as in the second-generation offspring never exposed to GA. Thus, the authors hypothesize that transient exposure to GA during critical stages of synaptogenesis causes epigenetic changes in chromatin with deleterious effects on transcription of target genes crucial for proper synapse formation and cognitive development. They focus on the effects of GA on histone acetyltransferase activity of cAMP-responsive element-binding protein and the histone-3 acetylation status in the promoters of the target genes brain-derived neurotrophic factor and cellular Finkel-Biskis-Jinkins murine sarcoma virus osteosarcoma oncogene (c-Fos) known to regulate the development of neuronal morphology and function. METHODS: Seven-day-old rat pups were exposed to a sedative dose of midazolam followed by combined nitrous oxide and isoflurane anesthesia for 6 h. Hippocampal neurons and organotypic hippocampal slices were cultured in vitro and exposed to GA for 24 h. RESULTS: GA caused epigenetic modulations manifested as histone-3 hypoacetylation (decrease of 25 to 30%, n = 7 to 9) and fragmentation of cAMP-responsive element-binding protein (two-fold increase, n = 6) with 25% decrease in its histone acetyltransferase activity, which resulted in down-regulated transcription of brain-derived neurotrophic factor (0.2- to 0.4-fold, n = 7 to 8) and cellular Finkel-Biskis-Jinkins murine sarcoma virus osteosarcoma oncogene (about 0.2-fold, n = 10 to 12). Reversal of histone hypoacetylation with sodium butyrate blocked GA-induced morphological and functional impairments of neuronal development and synaptic communication. CONCLUSION: Long-term impairments of neuronal development and synaptic communication could be caused by GA-induced epigenetic phenomena.


Asunto(s)
Anestesia General/efectos adversos , Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Hipocampo/efectos de los fármacos , Histonas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/efectos de los fármacos , Animales , Animales Recién Nacidos , Neurogénesis/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
10.
Mol Reprod Dev ; 81(10): 896-907, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25158006

RESUMEN

The study of spermatogenesis requires accurate identification of the stages of the cycle of the seminiferous epithelium. A stage refers to the unique association of germ cell types at a particular phase of development, as seen in a cross-sectioned seminiferous tubule. Stage-identification, however, is a daunting task. There are 12 stages represented in the mouse seminiferous epithelium. Stages are typically identified on the basis of the morphology of the developing acrosome of spermatids. Although the characteristic features of the acrosome are well-documented in ultrastructure images, a reagent that can highlight the subtle differences in acrosome shape under the light microscope is lacking. Here we demonstrate that a polyclonal antibody raised against the mouse acrosomal protein SP-10 is extremely useful for stage identification. Immunohistochemistry showed that the anti-SP-10 antibody is highly specific for the acrosome of spermatids, as no other cell type in the epithelium showed immunoreactivity. At lower magnification, the gross shape of the acrosome and the increasing intensity of immunostaining served as a guide for the identification of stages I-XII. At higher magnification, characteristic morphological features-such as whether the part of the acrosome that contacts the nuclear surface is round (stage III) or flat (stage IV) or curved (stage VI)-could be identified unambiguously. Overall, we present evidence that SP-10 is a useful marker for staging the cycle of the seminiferous epithelium. The anti-SP-10 antibody works well in different fixatives, on paraffin-embedded as well as cryosections, and has been shown to be useful for characterizing spermatogenic defects in mutant mice.


Asunto(s)
Acrosoma/metabolismo , Ciclo Celular/fisiología , Proteínas de la Membrana/metabolismo , Epitelio Seminífero/metabolismo , Espermátides/metabolismo , Espermatogénesis/fisiología , Animales , Inmunohistoquímica , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Mutantes , Epitelio Seminífero/citología , Espermátides/citología
11.
Bioorg Med Chem Lett ; 24(18): 4580-4585, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25131536

RESUMEN

Since inhibitors of mucin onco proteins are potential targets for breast cancer therapy, a series of novel 4-methylthiazole-5-carboxylic acid (1) derivatives 3a-k were synthesized by the reaction of 1 with SOCl2 followed by different bases/alcohols in the presence of triethylamine. Once synthesized and characterized, their binding modes with MUC1 were studied by molecular docking analysis using Aruglab 4.0.1 and QSAR properties were determined using HyperChem. All synthesized compounds were screened for in vitro anti-breast cancer activity against MDA-MB-231 breast adenocarcinoma cell lines by Trypan-blue cell viability assay and MTT methods. Compounds 1, 3b, 3d, 3e, 3i and 3f showed good anti-breast cancer activity. Since 1 and 3d exhibited high potent activity against MDA-MB-231 cell lines, they show could be effective mucin onco protein inhibitors.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Tiazoles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad Cuantitativa , Tiazoles/síntesis química , Tiazoles/química
12.
Psychopharmacology (Berl) ; 231(17): 3503-3515, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24800894

RESUMEN

RATIONALE: T-type calcium channels (T-channels) play an important role in controlling excitability of nociceptors. We have previously shown that a synthetic series of 5ß-reduced steroids induce a voltage-dependent blockade of T-currents in rat dorsal root ganglia (DRG) cells in vitro and induce potent analgesia to thermal stimuli in rats in vivo (Mol Pharmacol 66:1223-1235, 2004). OBJECTIVES: Here, we investigated the effects of the endogenous 5ß-reduced neuroactive steroid molecule, epipregnanolone [(3ß,5ß)-3-hydroxypregnan-20-one], on peripheral nociception. METHODS: We used acutely dissociated DRG cells in vitro from adult rats as well as in vivo pain studies in mice and rats to investigate the effects of epipregnanolone on DRG T-channels. RESULTS: We found that epipregnanolone reversibly blocked DRG T-currents with a half-maximal inhibitory concentration (IC50) of 2 µM and stabilized the channel in the inactive state. However, sodium, potassium, and gamma-aminobutyric acid (GABA)-gated ionic currents were not sensitive to the blocking effects of epipregnanolone even at 10 µM. In ensuing in vivo studies, we found that intraplantar (i.pl.) injections of epipregnanolone directly into peripheral receptive fields reduced responses to nociceptive heat stimuli in rats in a dose-dependent fashion. Furthermore, i.pl. epipregnanolone injections effectively reduced responses to peripheral nociceptive thermal and mechanical stimuli in wild-type mice but had no effect on the responses of CaV3.2 knockout mice. CONCLUSIONS: We conclude that the inhibition of peripheral CaV3.2 T-channels contributes to the potent analgesic effect of the endogenous steroid epipregnanolone.


Asunto(s)
Analgésicos/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/efectos de los fármacos , Nervios Periféricos/efectos de los fármacos , Pregnanolona/farmacología , Células Receptoras Sensoriales/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Canales de Calcio Tipo T/genética , Femenino , Masculino , Ratones , Ratones Noqueados , Nociceptores/efectos de los fármacos , Dimensión del Dolor/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas
13.
Diabetes ; 62(11): 3828-38, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23835327

RESUMEN

It has been established that Ca(V)3.2 T-type voltage-gated calcium channels (T-channels) play a key role in the sensitized (hyperexcitable) state of nociceptive sensory neurons (nociceptors) in response to hyperglycemia associated with diabetes, which in turn can be a basis for painful symptoms of peripheral diabetic neuropathy (PDN). Unfortunately, current treatment for painful PDN has been limited by nonspecific systemic drugs with significant side effects or potential for abuse. We studied in vitro and in vivo mechanisms of plasticity of Ca(V)3.2 T-channel in a leptin-deficient (ob/ob) mouse model of PDN. We demonstrate that posttranslational glycosylation of specific extracellular asparagine residues in Ca(V)3.2 channels accelerates current kinetics, increases current density, and augments channel membrane expression. Importantly, deglycosylation treatment with neuraminidase inhibits native T-currents in nociceptors and in so doing completely and selectively reverses hyperalgesia in diabetic ob/ob mice without altering baseline pain responses in healthy mice. Our study describes a new mechanism for the regulation of Ca(V)3.2 activity and suggests that modulating the glycosylation state of T-channels in nociceptors may provide a way to suppress peripheral sensitization. Understanding the details of this regulatory pathway could facilitate the development of novel specific therapies for the treatment of painful PDN.


Asunto(s)
Canales de Calcio Tipo T/fisiología , Neuropatías Diabéticas/tratamiento farmacológico , Glicosilación/efectos de los fármacos , Hiperalgesia/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Animales , Asparagina/metabolismo , Canales de Calcio Tipo T/efectos de los fármacos , Canales de Calcio Tipo T/genética , Células HEK293 , Humanos , Ratones , Ratones Obesos , Neuraminidasa/metabolismo , Nociceptores/efectos de los fármacos , Técnicas de Placa-Clamp , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Proteínas Recombinantes , Transfección
14.
Bioinformation ; 9(8): 421-5, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23750092

RESUMEN

Yeast strains are commonly associated with sugar rich environments. Various fruit samples were selected as source for isolating yeast cells. The isolated cultures were identified at Genus level by colony morphology, biochemical characteristics and cell morphological characters. An attempt has been made to check the viability of yeast cells under different concentrations of ethanol. Ethanol tolerance of each strain was studied by allowing the yeast to grow in liquid YEPD (Yeast Extract Peptone Dextrose) medium having different concentrations of ethanol. A total of fifteen yeast strains isolated from different samples were used for the study. Seven strains of Saccharomyces cerevisiae obtained from different fruit sources were screened for ethanol tolerance. The results obtained in this study show a range of tolerance levels between 7%-12% in all the stains. Further, the cluster analysis based on 22 RAPD (Random Amplified polymorphic DNA) bands revealed polymorphisms in these seven Saccharomyces strains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...