Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Oncol (Dordr) ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480611

RESUMEN

BACKGROUND: Gastric Cancer (GC) presents poor outcome, which is consequence of the high incidence of recurrence and metastasis at early stages. GC patients presenting recurrent or metastatic disease display a median life expectancy of only 8 months. The mechanisms underlying GC progression remain poorly understood. METHODS: We took advantage of public available GC datasets from TCGA using GEPIA, and identified the matched genes among the 100 genes most significantly associated with overall survival (OS) and disease free survival (DFS). Results were confirmed in ACRG cohort and in over 2000 GC cases obtained from several cohorts integrated using our own analysis pipeline. The Kaplan-Meier method and multivariate Cox regression analyses were used for prognostic significance and linear modelling and correlation analyses for association with clinic-pathological parameters and biological hallmarks. In vitro and in vivo functional studies were performed in GC cells with candidate genes and the related molecular pathways were studied by RNA sequencing. RESULTS: High expression of ANKRD6, ITIH3, SORCS3, NPY1R and CCDC178 individually and as a signature was associated with poor prognosis and recurrent disease in GC. Moreover, the expression of ANKRD6 and ITIH3 was significantly higher in metastasis and their levels associated to Epithelial to Mesenchymal Transition (EMT) and stemness markers. In line with this, RNAseq analysis revealed genes involved in EMT differentially expressed in ANKRD6 silencing cells. Finally, ANKRD6 silencing in GC metastatic cells showed impairment in GC tumorigenic and metastatic traits in vitro and in vivo. CONCLUSIONS: Our study identified a novel signature involved in GC malignancy and prognosis, and revealed a novel pro-metastatic role of ANKRD6 in GC.

2.
Nat Metab ; 5(9): 1544-1562, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37563469

RESUMEN

Resistance of melanoma to targeted therapy and immunotherapy is linked to metabolic rewiring. Here, we show that increased fatty acid oxidation (FAO) during prolonged BRAF inhibitor (BRAFi) treatment contributes to acquired therapy resistance in mice. Targeting FAO using the US Food and Drug Administration-approved and European Medicines Agency-approved anti-anginal drug ranolazine (RANO) delays tumour recurrence with acquired BRAFi resistance. Single-cell RNA-sequencing analysis reveals that RANO diminishes the abundance of the therapy-resistant NGFRhi neural crest stem cell subpopulation. Moreover, by rewiring the methionine salvage pathway, RANO enhances melanoma immunogenicity through increased antigen presentation and interferon signalling. Combination of RANO with anti-PD-L1 antibodies strongly improves survival by increasing antitumour immune responses. Altogether, we show that RANO increases the efficacy of targeted melanoma therapy through its effects on FAO and the methionine salvage pathway. Importantly, our study suggests that RANO could sensitize BRAFi-resistant tumours to immunotherapy. Since RANO has very mild side-effects, it might constitute a therapeutic option to improve the two main strategies currently used to treat metastatic melanoma.


Asunto(s)
Melanoma , Estados Unidos , Animales , Ratones , Ranolazina/farmacología , Ranolazina/uso terapéutico , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Inmunoterapia , Inhibidores de Proteínas Quinasas/farmacología , Metionina
3.
Cancers (Basel) ; 14(6)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35326607

RESUMEN

Gastric cancer (GC) is the fourth leading cause of cancer death worldwide, with an average 5-year survival rate of 32%, being of 6% for patients presenting distant metastasis. Despite the advances made in the treatment of GC, chemoresistance phenomena arise and promote recurrence, dissemination and dismal prognosis. In this context, gastric cancer stem cells (gCSCs), a small subset of cancer cells that exhibit unique characteristics, are decisive in therapy failure. gCSCs develop different protective mechanisms, such as the maintenance in a quiescent state as well as enhanced detoxification procedures and drug efflux activity, that make them insusceptible to current treatments. This, together with their self-renewal capacity and differentiation ability, represents major obstacles for the eradication of this disease. Different gCSC regulators have been described and used to isolate and characterize these cell populations. However, at the moment, no therapeutic strategy has achieved the effective targeting of gCSCs. This review will focus on the properties of cancer stem cells in the context of therapy resistance and will summarize current knowledge regarding the impact of the gCSC regulators that have been associated with GC chemoradioresistance.

4.
Cancer Res ; 82(7): 1283-1297, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35131870

RESUMEN

Chaperone-mediated autophagy (CMA) is a homeostatic process essential for the lysosomal degradation of a selected subset of the proteome. CMA activity directly depends on the levels of LAMP2A, a critical receptor for CMA substrate proteins at the lysosomal membrane. In glioblastoma (GBM), the most common and aggressive brain cancer in adulthood, high levels of LAMP2A in the tumor and tumor-associated pericytes have been linked to temozolomide resistance and tumor progression. However, the role of LAMP2A, and hence CMA, in any cancer stem cell type or in glioblastoma stem cells (GSC) remains unknown. In this work, we show that LAMP2A expression is enriched in patient-derived GSCs, and its depletion diminishes GSC-mediated tumorigenic activities. Conversely, overexpression of LAMP2A facilitates the acquisition of GSC properties. Proteomic and transcriptomic analysis of LAMP2A-depleted GSCs revealed reduced extracellular matrix interaction effectors in both analyses. Moreover, pathways related to mitochondrial metabolism and the immune system were differentially deregulated at the proteome level. Furthermore, clinical samples of GBM tissue presented overexpression of LAMP2, which correlated with advanced glioma grade and poor overall survival. In conclusion, we identified a novel role of CMA in directly regulating GSCs activity via multiple pathways at the proteome and transcriptome levels. SIGNIFICANCE: A receptor of chaperone-mediated autophagy regulates glioblastoma stem cells and may serve as a potential biomarker for advanced tumor grade and poor survival in this disease.


Asunto(s)
Autofagia Mediada por Chaperones , Glioma , Adulto , Autofagia , Autofagia Mediada por Chaperones/genética , Glioma/genética , Humanos , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Células Madre Neoplásicas/metabolismo , Proteómica , Transcriptoma
5.
Sci Rep ; 10(1): 357, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941916

RESUMEN

The developmental regulator SOX9 is linked to cancer progression mainly as a result of its role in the regulation of cancer stem cells (CSCs). However, its activity in the differentiated cells that constitute the heterogeneous tumor bulk has not been extensively studied. In this work, we addressed this aspect in gastric cancer, glioblastoma and pancreatic adenocarcinoma. SOX9 silencing studies revealed that SOX9 is required for cancer cell survival, proliferation and evasion of senescence in vitro and tumor growth in vivo. Gain of-SOX9 function showed that high levels of SOX9 promote tumor cell proliferation in vitro and in vivo. Mechanistically, the modulation of SOX9 changed the expression of the transcriptional repressor BMI1 in the same direction in the three types of cancer, and the expression of the tumor suppressor p21CIP in the opposite direction. In agreement with this, SOX9 expression positively correlated with BMI1 levels and inversely with p21CIP in clinical samples of the different cancers. Moreover, BMI1 re-establishment in SOX9-silenced tumor cells restored cell viability and proliferation as well as decreased p21CIP in vitro and tumor growth in vivo. These results indicate that BMI1 is a critical effector of the pro-tumoral activity of SOX9 in tumor bulk cells through the repression of p21CIP. Our results highlight the relevance of the SOX9-BMI1-p21CIP axis in tumor progression, shedding novel opportunities for therapeutic development.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Neoplasias/genética , Complejo Represivo Polycomb 1/metabolismo , Factor de Transcripción SOX9/metabolismo , Adenocarcinoma , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Glioblastoma , Humanos , Neoplasias/metabolismo , Procesos Neoplásicos , Neoplasias Pancreáticas , Factor de Transcripción SOX9/genética , Neoplasias Gástricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...