Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Control Release ; 364: 312-325, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37884210

RESUMEN

Cell membrane-derived particles (Mp) are rounded membrane-enclosed particles that are shed from tumor cells. Mp are formed from tumor membranes and are capable of tumor targeting and immunotherapeutic agents because they share membrane homology with parental cells; thus, they are under consideration as a drug delivery vehicle. Prostate-specific membrane antigen (PSMA), a transmembrane glycoprotein with enzymatic functionality, is highly expressed in Mp and extracellular vesicles (EV) from prostate cancer (PCa) with poor clinical prognosis. Although PSMA expression was previously shown in EV and Mp isolated from cell lines and from the blood of patients with high-grade PCa, no pathophysiological effects have been linked to PCa-derived Mp. Here, we compared Mp from PSMA-expressing (PSMA-Mp) and PSMA-non-expressing (WT-Mp) cells side by side in vitro and in vivo. PSMA-Mp can transfer PSMA and new phenotypic characteristics to the tumor microenvironment. The consequence of PSMA transfer to cells and increased secretion of vascular endothelial growth factor-A (VEGF-A), pro-angiogenic and pro-lymphangiogenic mediators, with increased 4E binding protein 1 (4EBP-1) phosphorylation.


Asunto(s)
Neoplasias de la Próstata , Factor A de Crecimiento Endotelial Vascular , Masculino , Humanos , Neoplasias de la Próstata/patología , Membrana Celular/metabolismo , Microambiente Tumoral
2.
Oncotarget ; 9(18): 14160-14174, 2018 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-29581835

RESUMEN

Oxysterols are cholesterol oxygenated derivatives which possess several biological actions. Among oxysterols, 7-ketocholesterol (7KC) is known to induce cell death. Here, we hypothesized that 7KC cytotoxicity could be applied in cancer therapeutics. 7KC was incorporated into a lipid core nanoemulsion. As a cellular model the murine melanoma cell line B16F10 was used. The nanoparticle (7KCLDE) uptake into tumor cells was displaced by increasing amounts of low-density-lipoproteins (LDL) suggesting a LDL-receptor-mediated cell internalization. 7KCLDE was mainly cytostatic, which led to an accumulation of polyploid cells. Nevertheless, a single dose of 7KCLDE killed roughly 10% of melanoma cells. In addition, it was observed dissipation of the transmembrane potential, evidenced with flow cytometry; presence of autophagic vacuoles, visualized and quantified with flow cytometry and acridine orange; and presence of myelin figures, observed with ultrastructural microscopy. 7KCLDE impaired cytokenesis was accompanied by changes in cellular morphology into a fibroblastoid shape which is supported by cytoskeletal rearrangements, as shown by the increased actin polymerization. 7KCLDE was injected into B16 melanoma tumor-bearing mice. 7KCLDE accumulated in the liver and tumor. In melanoma tumor 7KCLDE promoted a >50% size reduction, enlarged the necrotic area, and reduced intratumoral vasculature. 7KCLDE increased the survival rates of animals, without hematologic or liver toxicity. Although more pre-clinical studies should be performed, our preliminary results suggested that 7KCLDE is a promising novel preparation for cancer chemotherapy.

3.
Oncotarget ; 9(18): p. 14160-14174, 2018.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15289

RESUMEN

Oxysterols are cholesterol oxygenated derivatives which possess several biological actions. Among oxysterols, 7-ketocholesterol (7KC) is known to induce cell death. Here, we hypothesized that 7KC cytotoxicity could be applied in cancer therapeutics. 7KC was incorporated into a lipid core nanoemulsion. As a cellular model the murine melanoma cell line B16F10 was used. The nanoparticle (7KCLDE) uptake into tumor cells was displaced by increasing amounts of low-density-lipoproteins (LDL) suggesting a LDL-receptor-mediated cell internalization. 7KCLDE was mainly cytostatic, which led to an accumulation of polyploid cells. Nevertheless, a single dose of 7KCLDE killed roughly 10% of melanoma cells. In addition, it was observed dissipation of the transmembrane potential, evidenced with flow cytometry; presence of autophagic vacuoles, visualized and quantified with flow cytometry and acridine orange; and presence of myelin figures, observed with ultrastructural microscopy. 7KCLDE impaired cytokenesis was accompanied by changes in cellular morphology into a fibroblastoid shape which is supported by cytoskeletal rearrangements, as shown by the increased actin polymerization. 7KCLDE was injected into B16 melanoma tumor-bearing mice. 7KCLDE accumulated in the liver and tumor. In melanoma tumor 7KCLDE promoted a > 50% size reduction, enlarged the necrotic area, and reduced intratumoral vasculature. 7KCLDE increased the survival rates of animals, without hematologic or liver toxicity. Although more pre-clinical studies should be performed, our preliminary results suggested that 7KCLDE is a promising novel preparation for cancer chemotherapy.

4.
Oncotarget, v. 9, n. 18, p. 14160-14174, 2018
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2519

RESUMEN

Oxysterols are cholesterol oxygenated derivatives which possess several biological actions. Among oxysterols, 7-ketocholesterol (7KC) is known to induce cell death. Here, we hypothesized that 7KC cytotoxicity could be applied in cancer therapeutics. 7KC was incorporated into a lipid core nanoemulsion. As a cellular model the murine melanoma cell line B16F10 was used. The nanoparticle (7KCLDE) uptake into tumor cells was displaced by increasing amounts of low-density-lipoproteins (LDL) suggesting a LDL-receptor-mediated cell internalization. 7KCLDE was mainly cytostatic, which led to an accumulation of polyploid cells. Nevertheless, a single dose of 7KCLDE killed roughly 10% of melanoma cells. In addition, it was observed dissipation of the transmembrane potential, evidenced with flow cytometry; presence of autophagic vacuoles, visualized and quantified with flow cytometry and acridine orange; and presence of myelin figures, observed with ultrastructural microscopy. 7KCLDE impaired cytokenesis was accompanied by changes in cellular morphology into a fibroblastoid shape which is supported by cytoskeletal rearrangements, as shown by the increased actin polymerization. 7KCLDE was injected into B16 melanoma tumor-bearing mice. 7KCLDE accumulated in the liver and tumor. In melanoma tumor 7KCLDE promoted a > 50% size reduction, enlarged the necrotic area, and reduced intratumoral vasculature. 7KCLDE increased the survival rates of animals, without hematologic or liver toxicity. Although more pre-clinical studies should be performed, our preliminary results suggested that 7KCLDE is a promising novel preparation for cancer chemotherapy.

5.
Appl Radiat Isot ; 68(6): 1087-93, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20153207

RESUMEN

Three carbohydrate conjugated dipicolylamine chelators, 2-bis(2-pyridinylmethyl)amino)ethyl 1-deoxy-1-thio-beta-D-glucopyranoside (L(1)), 2-bis(2-pyridinylmethyl)amino)ethyl-beta-D-glucopyranoside (L(2)), and 2-bis(2-pyridinylmethyl)amino)carboxamide-N-(2-amino-2-deoxy-D-glucopyranose) (L(3)) were complexed to the [M(CO)(3)](+) core (M=Tc, Re) and the properties of the resulting complexes were investigated. Synthesis and characterization of the chelator 2-bis(2-pyridinylmethyl)amino)ethyl 1-deoxy-1-thio-beta-D-glucopyranoside (L(1)) and the corresponding Re complex are reported. All chelators were radiolabeled in high yield with [(99m)Tc(CO)(3)(H(2)O)(3)](+) (>98%) and [(186)Re(CO)(3)(H(2)O)(3)](+) (>80%). The chelators and Re-complexes were determined to not be substrates for the glucose metabolism enzyme hexokinase. However, the biodistribution of each of the (99m)Tc complexes demonstrated fast clearance from most background tissue, including >75% clearance of the activity in the kidneys and the liver within 2h post-injection.


Asunto(s)
Quelantes/síntesis química , Glucósidos/química , Piridinas/química , Renio/química , Tecnecio/química , Animales , Hexoquinasa/metabolismo , Marcaje Isotópico , Ratones , Ratones Endogámicos C57BL , Compuestos de Organotecnecio , Radiofármacos , Distribución Tisular
6.
Thromb Res ; 125(1): 38-43, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19447475

RESUMEN

INTRODUCTION: Pulmonary arterial hypertension (PAH) is frequently associated with thrombotic events, particularly involving the pulmonary microcirculation at sites of vascular injury. We therefore decided to analyse protease-activated receptor 1 (PAR1), a key element in the activation of human platelets by thrombin, in PAH patients in stable clinical condition. METHODS: Using flow cytometry, we analyzed platelet PAR1 density, PAR1-mediated exposure of P-selectin and the formation of platelet-leukocyte aggregates in 30 PAH patients aged 11 to 78 years (median 50.5 years). The control group consisted of 25 healthy subjects with the same age range as patients. RESULTS: In patients, total platelet PAR1 density and uncleaved PAR1 density correlated negatively with platelet count (r(2)=0.33 and r(2)=0.34 respectively, p<0.0015). In patients with a low platelet count (<150x10(9) platelets/L), both densities were increased relative to controls (82% and 33% respectively, p<0.05). Thrombin peptide-induced platelet exposure of P-selectin was directly related to total and uncleaved PAR1 density (respectively, r(2)=0.33 and r(2)=0.29, p<0.0025) and increased in subjects with low platelet count (46% versus those with normal platelet count, p<0.05). Patients with low platelet count had decreased in vitro thrombin-induced formation of platelet-leukocyte aggregates (57% decrease versus controls, p<0.05). CONCLUSIONS: There seems to be a subpopulation of PAH patients with increased propensity to thrombotic events as suggested by increased platelet PAR1 expression and PAR-mediated surface exposure of P-selectin associated with decreased platelet count.


Asunto(s)
Plaquetas/metabolismo , Hipertensión Pulmonar/metabolismo , Selectina-P/metabolismo , Arteria Pulmonar/fisiopatología , Receptor PAR-1/metabolismo , Adolescente , Adulto , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Recuento de Plaquetas , Adulto Joven
7.
Proteomics ; 6(5): 1460-70, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16429458

RESUMEN

Using 2-DE of total cell protein extracts, we compared soluble proteins from murine melanoma lines Tm1 and Tm5 with proteins from the nontumoral cell melan-a from which they were derived. Seventy-one of the 452 spots (average) detected with CBB were differentially accumulated, i.e., increased or decreased twofold. Forty-four spots were identified by PMF/MALDI-TOF, 15 with increased and 29 with decreased protein levels. SAGE showed that 17/34 (50%) of the differentially accumulated proteins, pI range 4-7, presented similar differences at the mRNA level. Major reductions in protein were observed in tumor cells of proteins that degrade reactive oxygen species (ROS). Decreases of > or = twofold in GST, superoxide dismutase, aldehyde dehydrogenase, thioredoxin, peroxiredoxin 2, and peroxiredoxin 6 protein were observed. SAGE indicated the reduction of other proteins involved in ROS degradation. As expected, the accumulation of exogenous peroxides was significantly higher in the tumor cells while the levels of glutathionylation were two times lower in the tumor cells compared to melan-a. The differential accumulation of proteins involved in oncogene/tumor suppressor pathways was observed. Melanoma cells can favor survival pathways activated by ROS by inhibiting p53 pathways and activation of Ras and c-myc pathways.


Asunto(s)
Electroforesis en Gel Bidimensional/métodos , Melanoma , Proteínas de Neoplasias , Proteoma/análisis , Proteómica , Especies Reactivas de Oxígeno/metabolismo , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Melanoma/química , Melanoma/metabolismo , Melanoma/patología , Ratones , Datos de Secuencia Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Oxidantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...