Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 55(14): 3829-39, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27168300

RESUMEN

Solar thermal collectors are radiative heat exchangers. Their efficacy is dictated predominantly by their absorption of short wavelength solar radiation and, importantly, by their emission of long wavelength thermal radiation. In conventional collector designs, the receiver is coated with a selectively absorbing surface (Black Chrome, TiNOx, etc.), which serves both of these aims. As the leading commercial absorber, TiNOx consists of several thin, vapor deposited layers (of metals and ceramics) on a metal substrate. In this technology, the solar absorption to thermal emission ratio can exceed 20. If a solar system requires an analogous transparent component-one which transmits the full AM1.5 solar spectrum, but reflects long wavelength thermal emission-the technology is much less developed. Bespoke "heat mirrors" are available from optics suppliers at high cost, but the closest mass-produced commercial technology is low-e glass. Low-e glasses are designed for visible light transmission and, as such, they reflect up to 50% of available solar energy. To address this technical gap, this study investigated selected combinations of thin films that could be deposited to serve as transparent, selective solar covers. A comparative numerical analysis of feasible materials and configurations was investigated using a nondimensional metric termed the efficiency factor for selectivity (EFS). This metric is dependent on the operation temperature and solar concentration ratio of the system, so our analysis covered the practical range for these parameters. It was found that thin films of indium tin oxide (ITO) and ZnS-Ag-ZnS provided the highest EFS. Of these, ITO represents the more commercially viable solution for large-scale development. Based on these optimized designs, proof-of-concept ITO depositions were fabricated and compared to commercial depositions. Overall, this study presents a systematic guide for creating a new class of selective, transparent optics for solar thermal collectors.

2.
Langmuir ; 31(48): 13191-200, 2015 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-26445163

RESUMEN

A simple synthesis route for gold-polymer composite particles with controlled structure (multipetal structure and dumbbell structure) is developed. It is intriguing to observe that by controlling the reaction time and size of gold nanoparticles (AuNPs), tetrapetal-, tripetal-, and dumbbell-structured gold-polystyrene composite are obtained via seeded polymerization. The average number of petals on a single AuNP increases with the AuNP diameter. These particles show potential applications as building blocks for advanced ordered and hierarchical supracolloidal materials. Further, with the incorporation of poly(N-isopropylacrylamide) (PNIPAm), "smart" thermoresponsive dumbbell-structured gold-PNIPAm/polystyrene composite particles are formed. Significant size variation is validated for particles with 83 and 91 wt % PNIPAm content around lower critical solution temperature (LCST), which results in self-modulated catalytic activity.

3.
J Colloid Interface Sci ; 425: 12-9, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24776658

RESUMEN

Environmentally responsive polystyrene/poly (N-isopropylacrylamide)-gold composite particles are successfully synthesized via a Pickering emulsion polymerization method. It is found that the core-shell and asymmetric structured particles are simultaneously formed during the polymerization. Compared with the core-shell structured composite particles, the asymmetric particles have a higher thermo-responsiveness as a result of differences in morphology and formation mechanism. For asymmetric composite particles, an increase in N-isopropylacrylamide (NIPAAM) content leads to more significant size variation upon temperature changes. From rheology measurements, the viscosity of asymmetric particles suspension greatly decreases as temperature is increased above the lower critical solution temperature (LCST). The large size decrease in asymmetric composite particles gives rise to a significant scattering intensity increase, as a result of increased refractive index contrast between the PNIPAM content and surrounding water. The resulting size decrease also leads to tunable surface plasmon resonance properties.

4.
Langmuir ; 30(1): 75-82, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24308422

RESUMEN

Core-shell structured polystyrene-gold composite particles are synthesized from one-step Pickering emulsion polymerization. The surface coverage of the core-shell composite particles is improved with increasing gold nanoparticle (AuNP) hydrophobicity and concentration. At high surface coverage, the AuNPs exhibit an ordered hexagonal pattern, likely due to electrostatic repulsion during the emulsion polymerization process. In addition to core-shell structured polystyrene-gold composite particles, an intriguing observation is that at low AuNP concentrations, asymmetric polystyrene-gold nanocomposite particles are simultaneously formed, where a single gold nanoparticle is attached onto each polystyrene particle. It is found that these asymmetric particles are formed via a "seeded-growth" mechanism. The core-shell and asymmetric polystyrene-gold composite particles prove to be efficient catalysts as they successfully catalyze the Rhodamine B reduction reaction with stable performance and show high recyclability as catalysts.

5.
Appl Opt ; 52(7): 1413-22, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23458793

RESUMEN

In this article we report recent modeling and design work indicating that mixtures of nanoparticles in liquids can be used as an alternative to conventional optical filters. The major motivation for creating liquid optical filters is that they can be pumped in and out of a system to meet transient needs in an application. To demonstrate the versatility of this new class of filters, we present the design of nanofluids for use as long-pass, short-pass, and bandpass optical filters using a simple Monte Carlo optimization procedure. With relatively simple mixtures, we achieve filters with <15% mean-squared deviation in transmittance from conventional filters. We also discuss the current commercial feasibility of nanofluid-based optical filters by including an estimation of today's off-the-shelf cost of the materials. While the limited availability of quality commercial nanoparticles makes it hard to compete with conventional filters, new synthesis methods and economies of scale could enable nanofluid-based optical filters in the near future. As such, this study lays the groundwork for creating a new class of selective optical filters for a wide range of applications, namely communications, electronics, optical sensors, lighting, photography, medicine, and many more.

6.
Nanoscale Res Lett ; 6(1): 225, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21711750

RESUMEN

Suspensions of nanoparticles (i.e., particles with diameters < 100 nm) in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 µm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase.

7.
Environ Sci Technol ; 43(15): 6082-7, 2009 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-19731722

RESUMEN

This study compares environmental and economic impacts of using nanofluids to enhance solar collector efficiency as compared to conventional solar collectors for domestic hotwater systems. Results show that for the current cost of nanoparticles the nanofluid based solar collector has a slightly longer payback period but at the end of its useful life has the same economic savings as a conventional solar collector. The nanofluid based collector has a lower embodied energy (approximately 9%) and approximately 3% higher levels of pollution offsets than a conventional collector. In addition if 50% penetration of residential nanofluid based solar collector systems for hot water heating could be achieved in Phoenix, Arizona over 1 million metric tons of CO2 would be offset per year.


Asunto(s)
Ambiente , Contaminantes Ambientales/análisis , Energía Solar/economía , Arizona , Dióxido de Carbono/química , Conservación de los Recursos Naturales/economía , Conservación de los Recursos Naturales/métodos , Monitoreo del Ambiente/métodos , Calefacción , Microfluídica , Nanopartículas/química , Nanotecnología/métodos , Estaciones del Año , Luz Solar , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...