Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Neurosurg Rev ; 47(1): 81, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355824

RESUMEN

Tremor, bradykinesia, and rigidity are incapacitating motor symptoms that can be suppressed with stereotactic neurosurgical treatment like deep brain stimulation (DBS) and ablative surgery (e.g., thalamotomy, pallidotomy). Traditionally, clinicians rely on clinical rating scales for intraoperative evaluation of these motor symptoms during awake stereotactic neurosurgery. However, these clinical scales have a relatively high inter-rater variability and rely on experienced raters. Therefore, objective registration (e.g., using movement sensors) is a reasonable extension for intraoperative assessment of tremor, bradykinesia, and rigidity. The main goal of this scoping review is to provide an overview of electronic motor measurements during awake stereotactic neurosurgery. The protocol was based on the PRISMA extension for scoping reviews. After a systematic database search (PubMed, Embase, and Web of Science), articles were screened for relevance. Hundred-and-three articles were subject to detailed screening. Key clinical and technical information was extracted. The inclusion criteria encompassed use of electronic motor measurements during stereotactic neurosurgery performed under local anesthesia. Twenty-three articles were included. These studies had various objectives, including correlating sensor-based outcome measures to clinical scores, identifying optimal DBS electrode positions, and translating clinical assessments to objective assessments. The studies were highly heterogeneous in device choice, sensor location, measurement protocol, design, outcome measures, and data analysis. This review shows that intraoperative quantification of motor symptoms is still limited by variable signal analysis techniques and lacking standardized measurement protocols. However, electronic motor measurements can complement visual evaluations and provide objective confirmation of correct placement of the DBS electrode and/or lesioning. On the long term, this might benefit patient outcomes and provide reliable outcome measures in scientific research.


Asunto(s)
Estimulación Encefálica Profunda , Procedimientos Neuroquirúrgicos , Humanos , Estimulación Encefálica Profunda/métodos , Hipocinesia , Resultado del Tratamiento , Temblor/diagnóstico , Temblor/cirugía , Vigilia
2.
J Neuropsychol ; 18 Suppl 1: 8-18, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37309888

RESUMEN

Deep brain stimulation (DBS) of the internal globus pallidus (GPi) is a recognized treatment for medication-refractory dystonia. Problems in executive functions and social cognition can be part of dystonia phenotypes. The impact of pallidal DBS on cognition appears limited, but not all cognitive domains have been investigated yet. In the present study, we compare cognition before and after GPi DBS. Seventeen patients with dystonia of various aetiology completed pre- and post-DBS assessment (mean age 51 years; range 20-70 years). Neuropsychological assessment covered intelligence, verbal memory, attention and processing speed, executive functioning, social cognition, language and a depression questionnaire. Pre-DBS scores were compared with a healthy control group matched for age, gender and education, or with normative data. Patients were of average intelligence but performed significantly poorer than healthy peers on tests for planning and for information processing speed. Otherwise, they were cognitively unimpaired, including social cognition. DBS did not change the baseline neuropsychological scores. We confirmed previous reports of executive dysfunctions in adult dystonia patients with no significant influence of DBS on cognitive functioning in these patients. Pre-DBS neuropsychological assessments appear useful as they support clinicians in counselling their patients. Decisions about post-DBS neuropsychological evaluations should be made on a case-by-case basis.


Asunto(s)
Estimulación Encefálica Profunda , Distonía , Adulto , Humanos , Persona de Mediana Edad , Distonía/terapia , Distonía/psicología , Pruebas Neuropsicológicas , Función Ejecutiva , Globo Pálido/fisiología , Resultado del Tratamiento
3.
J Clin Med ; 12(18)2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37762828

RESUMEN

Thalamotomy alleviates medication-refractory tremors in patients with movement disorders such as Parkinson's Disease (PD), Essential tremor (ET), and Holmes tremor (HT). However, limited data are available on tremor intensity during different thalamotomy stages. Also, the predictive value of the intraoperative tremor status for treatment outcomes remains unclear. Therefore, we aimed to quantify tremor status during thalamotomy and postoperatively. Data were gathered between January 2020 and June 2023 during consecutive unilateral thalamotomy procedures in patients with PD (n = 13), ET (n = 8), and HT (n = 3). MDS-UPDRS scores and tri-axial accelerometry data were obtained during rest, postural, and intention tremor tests. Measurements were performed intraoperatively (1) before lesioning-probe insertion, (2) directly after lesioning-probe insertion, (3) during coagulation, (4) directly after coagulation, and (5) 4-6 months post-surgery. Accelerometric data were recorded continuously during the coagulation process. Outcome measures included MDS-UPDRS tremor scores and accelerometric parameters (peak frequency, tremor amplitude, and area under the curve of power (AUCP)). Tremor intensity was assessed for the insertion effect (1-2), during coagulation (3), post-coagulation effect (1-4), and postoperative effect (1-5). Following insertion and coagulation, tremor intensity improved significantly compared to baseline (p < 0.001). The insertion effect clearly correlated with the postoperative effect (ρ = 0.863, p < 0.001). Both tremor amplitude and AUCP declined gradually during coagulation. Peak frequency did not change significantly intraoperatively. In conclusion, the study data show that both the intraoperative insertion effect and the post-coagulation effect are good predictors for thalamotomy outcomes.

4.
J Clin Med ; 12(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37445270

RESUMEN

The disease status, progression, and treatment effect of essential tremor (ET) patients are currently assessed with clinical scores, such as the Fahn-Tolosa-Marin Clinical Rating Scale for Tremor (FTM). The use of objective and rater-independent monitoring of tremors may improve clinical care for patients with ET. Therefore, the focus of this study is to develop an objective accelerometry-based method to quantify ET, based on FTM criteria. Thirteen patients with ET and thirteen matched healthy participants underwent FTM tests to rate tremor severity, paired with tri-axial accelerometric measurements at the index fingers. Analogue FTM assessments were performed by four independent raters based on video recordings. Quantitative measures were derived from the accelerometric data, e.g., the area under the curve of power in the 4-8 Hz frequency band (AUCP) and maximal tremor amplitude. As such, accelerometric tremor scores were computed, using thresholds based on healthy measurements and FTM criteria. Agreement between accelerometric and clinical FTM scores was analyzed with Cohen's kappa coefficient. It was assessed whether there was a relationship between mean FTM scores and the natural logarithm (ln) of the accelerometric outcome measures using linear regression. The agreement between accelerometric and FTM scores was substantial for resting and intention tremor tests (≥72.7%). However, the agreement between accelerometric postural tremor data and clinical FTM ratings (κ = 0.459) was low, although their logarithmic (ln) relationship was substantial (R2 ≥ 0.724). Accelerometric test-retest reliability was good to excellent (ICC ≥ 0.753). This pilot study shows that tremors can be quantified with accelerometry, using healthy thresholds and FTM criteria. The test-retest reliability of the accelerometric tremor scoring algorithm indicates that our low-cost accelerometry-based approach is a promising one. The proposed easy-to-use technology could diminish the rater dependency of FTM scores and enable physicians to monitor ET patients more objectively in clinical, intraoperative, and home settings.

5.
Neuromodulation ; 26(2): 459-465, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34494335

RESUMEN

OBJECTIVE: During the surgical procedure of deep brain stimulation (DBS), insertion of an electrode in the subthalamic nucleus (STN) frequently causes a temporary improvement of motor symptoms, known as the microlesion effect (MLE). The objective of this study was to determine the correlation between the intraoperative MLE and the clinical effect of DBS. MATERIALS AND METHODS: Thirty Parkinson's disease (PD) patients with Movement Disorder Society (MDS) Unified Parkinson's Disease Rating Scale (UPDRS) part III (MDS-UPDRS III) scores during bilateral STN-DBS implantation were included in this retrospective study. MDS-UPDRS III subscores (resting tremor, rigidity, and bradykinesia) of the contralateral upper extremity were used. During surgery, these subscores were assessed directly before and after insertion of the electrode. Also, these subscores were determined in the outpatient clinic after 11 weeks on average (on-stimulation). All assessments were performed in an off-medication state (at least 12 hours of medication washout). RESULTS: Postinsertion MDS-UPDRS motor scores decreased significantly compared to preinsertion scores (p < 0.001 for both hemispheres). The MLE showed a positive correlation with the clinical effect of DBS in both hemispheres (rho = 0.68 for the primarily treated hemisphere, p < 0.001, and rho = 0.59 for the secondarily treated hemisphere, p < 0.01). CONCLUSION: The MLE has a clinically relevant correlation with the effect of DBS in PD patients. These results suggest that the MLE can be relied upon as evidence of a clinically effective DBS electrode placement.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Estudios Retrospectivos , Estimulación Encefálica Profunda/métodos , Resultado del Tratamiento , Núcleo Subtalámico/cirugía
6.
J Pers Med ; 12(7)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35887581

RESUMEN

In recent years, patient-specific spinal drill guides (3DPGs) have gained widespread popularity. Several studies have shown that the accuracy of screw insertion with these guides is superior to that obtained using the freehand insertion technique, but there are no studies that make a comparison with computer-assisted surgery (CAS). The aim of this study was to determine whether the accuracy of insertion of spinal screws using 3DPGs is non-inferior to insertion via CAS. A randomized controlled split-spine study was performed in which 3DPG and CAS were randomly assigned to the left or right sides of the spines of patients undergoing fixation surgery. The 3D measured accuracy of screw insertion was the primary study outcome parameter. Sixty screws inserted in 10 patients who completed the study protocol were used for the non-inferiority analysis. The non-inferiority of 3DPG was demonstrated for entry-point accuracy, as the upper margin of the 95% CI (−1.01 mm−0.49 mm) for the difference between the means did not cross the predetermined non-inferiority margin of 1 mm (p < 0.05). We also demonstrated non-inferiority of 3D angular accuracy (p < 0.05), with a 95% CI for the true difference of −2.30°−1.35°, not crossing the predetermined non-inferiority margin of 3° (p < 0.05). The results of this randomized controlled trial (RCT) showed that 3DPGs provide a non-inferior alternative to CAS in terms of screw insertion accuracy and have considerable potential as a navigational technique in spinal fixation.

7.
J Clin Med ; 11(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35566401

RESUMEN

The most frequently used method for evaluating tremor in Parkinson's disease (PD) is currently the internationally standardized Movement Disorder Society­Unified PD Rating Scale (MDS-UPDRS). However, the MDS-UPDRS is associated with limitations, such as its inherent subjectivity and reliance on experienced raters. Objective motor measurements using accelerometry may overcome the shortcomings of visually scored scales. Therefore, the current study focuses on translating the MDS-UPDRS tremor tests into an objective scoring method using 3D accelerometry. An algorithm to measure and classify tremor according to MDS-UPDRS criteria is proposed. For this study, 28 PD patients undergoing neurosurgical treatment and 26 healthy control subjects were included. Both groups underwent MDS-UPDRS tests to rate tremor severity, while accelerometric measurements were performed at the index fingers. All measurements were performed in an off-medication state. Quantitative measures were calculated from the 3D acceleration data, such as tremor amplitude and area-under-the-curve of power in the 4−6 Hz range. Agreement between MDS-UPDRS tremor scores and objective accelerometric scores was investigated. The trends were consistent with the logarithmic relationship between tremor amplitude and MDS-UPDRS score reported in previous studies. The accelerometric scores showed a substantial concordance (>69.6%) with the MDS-UPDRS ratings. However, accelerometric kinetic tremor measures poorly associated with the given MDS-UPDRS scores (R2 < 0.3), mainly due to the noise between 4 and 6 Hz found in the healthy controls. This study shows that MDS-UDPRS tremor tests can be translated to objective accelerometric measurements. However, discrepancies were found between accelerometric kinetic tremor measures and MDS-UDPRS ratings. This technology has the potential to reduce rater dependency of MDS-UPDRS measurements and allow more objective intraoperative monitoring of tremor.

8.
J Clin Med ; 11(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35054031

RESUMEN

There is a growing interest in deep brain stimulation (DBS) of the nucleus basalis of Meynert (NBM) as a potential therapeutic modality for Parkinson's disease dementia (PDD). Low-frequency stimulation has yielded encouraging results in individual patients; however, these are not yet sustained in larger studies. With the aim to expand the understanding of NBM-DBS, we share our experience with serendipitous NBM-DBS in patients treated with DBS of the internal Globus pallidus (GPi) for Parkinson's disease. Since NBM is anatomically located ventral to GPi, several GPi-treated patients appeared to have the distal contact of DBS-electrode(s) positioned in the NBM. We hypothesized that unintentional high-frequency NBM-DBS over a period of one year would result in the opposite effect of low-frequency NBM-stimulation and cause cognitive decline. We studied a cohort of 33 patients with bilateral high-frequency DBS in the GPi for Parkinson's disease, of which twelve were unintentionally co-stimulated in NBM. The subgroups of unintentional unilateral (N = 7) and bilateral NBM-DBS (N = 5) were compared to the control group of bilateral GPi-DBS (N = 11). Here, we show that unintentional high-frequency NBM-DBS did not cause a significantly faster decline in cognitive function. Further research is warranted for characterizing the therapeutic role of NBM-DBS.

9.
Parkinsonism Relat Disord ; 93: 74-76, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34826764

RESUMEN

The clinical benefit of Deep Brain Stimulation (DBS) is associated with electrode positioning accuracy. Intraoperative assessment of clinical effect is therefore key. Evaluating this clinical effect in patients with dystonic head tremor, as opposed to limb tremor, is challenging because the head is fixed in a stereotactic frame. To clinically assess head tremor during surgery, surface electromyography (EMG) electrodes were bilaterally applied to the sternocleidomastoid and cervical paraspinal muscles. This case shows that intraoperative polymyography is an easy and useful tool to assess the clinical effect of DBS electrode positioning.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Distonía/cirugía , Monitorización Neurofisiológica Intraoperatoria/métodos , Miografía/métodos , Temblor/cirugía , Anciano de 80 o más Años , Femenino , Humanos , Ilustración Médica , Miografía/tendencias
10.
Int Med Case Rep J ; 14: 429-433, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34211300

RESUMEN

Symptoms of spinal cord ischemia can mimic myelopathy due to spinal cord compression in the acute phase. Thoracic disc herniation with limited spinal cord compression but rapid progression of neurological symptoms causes a clinical dilemma as to whether emergency decompression should be performed. We report a case of acute progressive myelopathy due to spinal cord ischemia related to thoracic disc herniation initially managed by Th8 laminectomy with reduction of the herniated disc. Repeat imaging showed T2-weighted hyperintensity in the posterior cord. The clinical and radiological course supports posterior spinal artery ischemia. This case illustrates and a review of the literature shows that thoracic disc herniation may be complicated by ischemic myelopathy even in the absence of cord compression.

11.
Spine (Phila Pa 1976) ; 46(3): 160-168, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33093310

RESUMEN

STUDY DESIGN: Single-center retrospective case series. OBJECTIVE: The purpose of this study was to assess the safety and accuracy of three-dimensional (3D)-printed individualized drill guides for pedicle and lateral mass screw insertion in the cervical and upper-thoracic region, by comparing the preoperative 3D surgical plan with the postoperative results. SUMMARY OF BACKGROUND DATA: Posterior spinal fusion surgery can provide rigid intervertebral fixation but screw misplacement involves a high risk of neurovascular injury. However, modern spine surgeons now have tools such as virtual surgical planning and 3D-printed drill guides to facilitate spinal screw insertion. METHODS: A total of 15 patients who underwent posterior spinal fusion surgery involving patient-specific 3D-printed drill guides were included in this study. After segmentation of bone and screws, the postoperative models were superimposed onto the preoperative surgical plan. The accuracy of the realized screw trajectories was quantified by measuring the entry point and angular deviation. RESULTS: The 3D deviation analysis showed that the entry point and angular deviation over all 76 screw trajectories were 1.40 ±â€Š0.81 mm and 6.70 ±â€Š3.77°, respectively. Angular deviation was significantly higher in the sagittal plane than in the axial plane (P = 0.02). All screw positions were classified as "safe" (100%), showing no neurovascular injury, facet joint violation, or violation of the pedicle wall. CONCLUSIONS: 3D virtual planning and 3D-printed patient-specific drill guides appear to be safe and accurate for pedicle and lateral mass screw insertion in the cervical and upper-thoracic spine. The quantitative 3D deviation analyses confirmed that screw positions were accurate with respect to the 3D-surgical plan.Level of Evidence: 4.


Asunto(s)
Tornillos Pediculares , Fusión Vertebral/métodos , Cirugía Asistida por Computador/métodos , Adulto , Anciano , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Cuello , Periodo Posoperatorio , Impresión Tridimensional , Estudios Retrospectivos , Columna Vertebral/cirugía , Tomografía Computarizada por Rayos X
12.
Mov Disord ; 36(3): 547-557, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33215750

RESUMEN

Stereotactic lesioning of the bilateral globus pallidus (GPi) was one of the first surgical treatments for medication-refractory dystonia but has largely been abandoned in clinical practice after the introduction of deep brain stimulation (DBS). However, some patients with dystonia are not eligible for DBS. Therefore, we reviewed the efficacy, safety, and sustainability of bilateral pallidotomy by conducting a systematic review of individual patient data (IPD). Guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses and IPD were followed. In May 2020, Medline, Embase, Web of Science, and Cochrane Library were searched for studies reporting on outcome of bilateral pallidotomy for dystonia. If available, IPD were collected. In this systematic review, 100 patients from 33 articles were evaluated. Adverse events were reported in 20 patients (20%), of which 8 were permanent (8%). Pre-and postoperative Burke-Fahn-Marsden Dystonia Rating Movement Scale scores were available for 53 patients. A clinically relevant improvement (>20%) of this score was found in 42 of 53 patients (79%). Twenty-five patients with status dystonicus (SD) were described. In all but 2 the SD resolved after bilateral pallidotomy. Seven patients experienced a relapse of SD. Median-reported follow-up was 12 months (n = 83; range: 2-180 months). Based on the current literature, bilateral pallidotomy is an effective and relatively safe procedure for certain types of dystonia, particularly in medication-refractory SD. Although due to publication bias the underreporting of negative outcomes is very likely, bilateral pallidotomy is a reasonable alternative to DBS in selected dystonia patients. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Estimulación Encefálica Profunda , Distonía , Trastornos Distónicos , Trastornos del Movimiento , Palidotomía , Distonía/terapia , Trastornos Distónicos/terapia , Globo Pálido , Humanos , Resultado del Tratamiento
13.
Artículo en Inglés | MEDLINE | ID: mdl-32775016

RESUMEN

Background: To systematically evaluate the effectiveness of deep brain stimulation of the globus pallidus internus (GPi-DBS) in dystonia on pre-operatively set functional priorities in daily living. Methods: Fifteen pediatric and adult dystonia patients (8 male; median age 32y, range 8-65) receiving GPi-DBS were recruited. All patients underwent a multidisciplinary evaluation before and 1-year post DBS implantation. The Canadian Occupational Performance Measure (COPM) first identified and then measured changes in functional priorities. The Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) was used to evaluate dystonia severity. Results: Priorities in daily functioning substantially varied between patients but showed significant improvements on performance and satisfaction after DBS. Clinically significant COPM-score improvements were present in 7/8 motor responders, but also in 4/7 motor non-responders. Discussion: The use of a patient-oriented approach to measure GPi-DBS effectiveness in dystonia provides an unique insight in patients' priorities and demonstrates that tangible improvements can be achieved irrespective of motor response. Highlights: Functional priorities in life of dystonia patients and their caregivers vary greatlyThe effect of DBS on functional priorities did not correlate with motor outcomeHalf of the motor 'non-responder' patients reported important changes in their prioritiesThe effect of DBS in dystonia should not be measured by motor outcome alone.


Asunto(s)
Actividades Cotidianas , Estimulación Encefálica Profunda/métodos , Distonía/terapia , Trastornos Distónicos/terapia , Globo Pálido , Adolescente , Adulto , Anciano , Niño , Distonía/fisiopatología , Trastornos Distónicos/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Evaluación del Resultado de la Atención al Paciente , Resultado del Tratamiento , Adulto Joven
14.
Brain Stimul ; 13(6): 1507-1516, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32738409

RESUMEN

BACKGROUND: Beta-based adaptive Deep Brain Stimulation (aDBS) is effective in Parkinson's disease (PD), when assessed in the immediate post-implantation phase. However, the potential benefits of aDBS in patients with electrodes chronically implanted, in whom changes due to the microlesion effect have disappeared, are yet to be assessed. METHODS: To determine the acute effectiveness and side-effect profile of aDBS in PD compared to conventional continuous DBS (cDBS) and no stimulation (NoStim), years after DBS implantation, 13 PD patients undergoing battery replacement were pseudo-randomised in a crossover fashion, into three conditions (NoStim, aDBS or cDBS), with a 2-min interval between them. Patient videos were blindly evaluated using a short version of the Unified Parkinson's Disease Rating Scale (subUPDRS), and the Speech Intelligibility Test (SIT). RESULTS: Mean disease duration was 16 years, and the mean time since DBS-implantation was 6.9 years. subUPDRS scores (11 patients tested) were significantly lower both in aDBS (p=<.001), and cDBS (p = .001), when compared to NoStim. Bradykinesia subscores were significantly lower in aDBS (p = .002), and did not achieve significance during cDBS (p = .08), when compared to NoStim. Two patients demonstrated re-emerging tremor during aDBS. SIT scores of patients who presented stimulation-induced dysarthria significantly worsened in cDBS (p = .009), but not in aDBS (p = .407), when compared to NoStim. Overall, stimulation was applied 48.8% of the time during aDBS. CONCLUSION: Beta-based aDBS is effective in PD patients with bradykinetic phenotypes, delivers less stimulation than cDBS, and potentially has a more favourable speech side-effect profile. Patients with prominent tremor may require a modified adaptive strategy.


Asunto(s)
Ritmo beta/fisiología , Estimulación Encefálica Profunda/métodos , Monitorización Neurofisiológica Intraoperatoria/métodos , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Anciano , Anciano de 80 o más Años , Estudios Cruzados , Femenino , Humanos , Hipocinesia/diagnóstico , Hipocinesia/fisiopatología , Hipocinesia/terapia , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico , Temblor/diagnóstico , Temblor/fisiopatología , Temblor/terapia
15.
J Clin Med ; 9(6)2020 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-32545887

RESUMEN

The programming of deep brain stimulation (DBS) parameters for tremor is laborious and empirical. Despite extensive efforts, the end-result is often suboptimal. One reason for this is the poorly understood relationship between the stimulation parameters' voltage, pulse width, and frequency. In this study, we aim to improve DBS programming for essential tremor (ET) by exploring a new strategy. At first, the role of the individual DBS parameters in tremor control was characterized using a meta-analysis documenting all the available parameters and tremor outcomes. In our novel programming strategy, we applied 10 random combinations of stimulation parameters in eight ET-DBS patients with suboptimal tremor control. Tremor severity was assessed using accelerometers and immediate and sustained patient-reported outcomes (PRO's), including the occurrence of side-effects. The meta-analysis showed no substantial relationship between individual DBS parameters and tremor suppression. Nevertheless, with our novel programming strategy, a significantly improved (accelerometer p = 0.02, PRO p = 0.02) and sustained (p = 0.01) tremor suppression compared to baseline was achieved. Less side-effects were encountered compared to baseline. Our pilot data show that with this novel approach, tremor control can be improved in ET patients with suboptimal tremor control on DBS. In addition, this approach proved to have a beneficial effect on stimulation-related complications.

16.
Obes Surg ; 30(10): 4145-4148, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32451916

RESUMEN

Binge eating disorder (BED), with its compulsive and addictive components, may often underlie weight regain after gastrointestinal bariatric surgeries. BED is therefore considered an exclusion criterion for these surgeries. Anecdotal reports suggest that deep brain stimulation (DBS) is an effective treatment for addictive disorders with, similar to BED, pathological changes in cerebral reward circuitry. We therefore assessed effect of DBS of the nucleus accumbens (NAC) in a rat model of BED. Twenty-one male obesity prone Wistar rats with DBS electrodes placed in NAC subregions were subjected to a binge eating protocol. Binge eating was significantly reduced with DBS during (NAC core) or before (NAC lateral shell) the binge. These outcomes provide a base to further explore the potential of DBS in the treatment of BED.


Asunto(s)
Trastorno por Atracón , Estimulación Encefálica Profunda , Obesidad Mórbida , Animales , Trastorno por Atracón/terapia , Masculino , Núcleo Accumbens , Obesidad Mórbida/cirugía , Ratas , Ratas Wistar
17.
Stereotact Funct Neurosurg ; 98(3): 187-192, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32316017

RESUMEN

BACKGROUND: Thalamotomy is an endorsed treatment for medication-refractory tremor. It used to be the standard, but nowadays deep brain stimulation (DBS) has become the treatment option of choice. Nevertheless, DBS has the disadvantage of hardware failure, battery replacement, and frequent setting adjustment. Radiofrequency (RF) thalamotomy lacks these issues, is relatively inexpensive, and has a broad applicability in patients with significant comorbidity. Therefore, we analyzed the long-term patient-reported outcome of RF thalamotomy in a cohort of patients with an otherwise intractable tremor. METHODS: A single-center cohort of 27 consecutive patients with intractable tremor was assessed after unilateral RF thalamotomy. Over time, 4 patients had died because of non-related causes. In total, 21 patients responded to a telephone survey to assess their personal judgment on postoperative tremor severity, using a validated tremor scale, adverse events, recurrence, and patient satisfaction. The median time between surgery and telephone survey was 39 months (range 12-126). Seven patients had an additional analysis with postoperative imaging, video-assisted electromyography tremor registration, and a self-reported treatment effect (SRTE) assessment. RESULTS: Nineteen out of 21 patients (90.5%) reported absence or significant improvement of their tremor. The rating score (WHIGET/UPDRS-III) dropped significantly from a mean of 3.57 preoperatively to 1.05 postoperatively (p < 0.001). Eleven patients (52.4%) reported adverse events, but the majority (76.2%) did not consider the adverse events to be severe. SRTE assessment showed a direct postoperative effect of 89.6 of 100 points (SD 10.8), with a gradual decrease to 75.3 (SD 23.5) during follow-up. CONCLUSIONS: RF thalamotomy is a very effective long-term treatment for medication-refractory tremor and should therefore be considered in patients with a refractory unilateral tremor.


Asunto(s)
Medición de Resultados Informados por el Paciente , Psicocirugía/métodos , Ablación por Radiofrecuencia/métodos , Tálamo/cirugía , Temblor/cirugía , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Electromiografía/métodos , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Satisfacción del Paciente , Psicocirugía/tendencias , Ablación por Radiofrecuencia/tendencias , Tálamo/diagnóstico por imagen , Resultado del Tratamiento , Temblor/diagnóstico por imagen
18.
Ned Tijdschr Geneeskd ; 1632019 08 06.
Artículo en Holandés | MEDLINE | ID: mdl-31386315

RESUMEN

Deep brain stimulation (DBS) is a treatment which uses high-frequency electric stimulation to suppress pathological brain activity. DBS has been applied for over 30 years now, particularly in patients with severe movement disorders, such as Parkinson's disease, dystonia and tremor. Although there is clearly scientific evidence for the effectiveness of DBS in these three movement disorders, the effect size of the treatment remains limited. Furthermore, DBS is not curative and can only be applied in a select subset of patients. In this article, we discuss the key indications and contraindications for DBS, and the outcomes achieved when it is applied in the aforementioned movement disorders. We discuss the most notable controversies and new developments in the field of deep brain stimulation, in order to offer referrers and fellow healthcare professionals an accessible introduction to this mode of therapy.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Trastornos del Movimiento/terapia , Contraindicaciones de los Procedimientos , Estimulación Encefálica Profunda/efectos adversos , Estimulación Encefálica Profunda/tendencias , Distonía/terapia , Trastornos Distónicos/terapia , Humanos , Enfermedad de Parkinson/terapia , Resultado del Tratamiento
19.
BMJ Open ; 9(6): e029652, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31201193

RESUMEN

INTRODUCTION: Adaptive deep brain stimulation (aDBS), based on the detection of increased beta oscillations in the subthalamic nucleus (STN), has been assessed in patients with Parkinson's disease (PD) during the immediate postoperative setting. In these studies, aDBS was shown to be at least as effective as conventional DBS (cDBS), while stimulation time and side effects were reduced. However, the effect of aDBS on motor symptoms and stimulation-induced side effects during the chronically implanted phase (after the stun effect of DBS placement has disappeared) has not yet been determined. METHODS AND ANALYSIS: This protocol describes a single-centre clinical study in which aDBS will be tested in 12 patients with PD undergoing battery replacement, with electrodes implanted in the STN, and as a proof of concept in the internal globus pallidus. Patients included will be allocated in a pseudo-randomised fashion to a three-condition (no stimulation/cDBS/ aDBS), cross-over design. A battery of tests will be conducted and recorded during each condition, which aim to measure the severity of motor symptoms and side effects. These tests include a tablet-based tapping test, a subscale of the Movement Disorder Society-unified Parkinson's disease rating scale (subMDS-UPDRS), the Speech Intelligibility Test (SIT) and a tablet-based version of the Stroop test. SubMDS-UPDRS and SIT recordings will be blindly assessed by independent raters. Data will be analysed using a linear mixed-effects model. ETHICS AND DISSEMINATION: This protocol was approved by the Ethical Committee of the University Medical Centre Groningen, where the study will be carried out. Data management and compliance to research policies and standards of our centre, including data privacy, storage and veracity, will be controlled by an independent monitor. All the scientific findings derived from this protocol are aimed to be made public through publication of articles in international journals. TRIAL REGISTRATION NUMBER: NTR 5456; Pre-results.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Enfermedad de Parkinson/terapia , Adulto , Estudios Cruzados , Humanos , Resultado del Tratamiento
20.
Neuromodulation ; 22(4): 472-477, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30629330

RESUMEN

INTRODUCTION: Clinical response to deep brain stimulation (DBS) strongly depends on the appropriate placement of the electrode in the targeted structure. Postoperative MRI is recognized as the gold standard to verify the DBS-electrode position in relation to the intended anatomical target. However, intraoperative computed tomography (iCT) might be a feasible alternative to MRI. MATERIALS AND METHODS: In this prospective noninferiority study, we compared iCT with postoperative MRI (24-72 hours after surgery) in 29 consecutive patients undergoing placement of 58 DBS electrodes. The primary outcome was defined as the difference in Euclidean distance between lead tip coordinates as determined on both imaging modalities, using the lead tip depicted on MRI as reference. Secondary outcomes were difference in radial error and depth, as well as difference in accuracy relative to target. RESULTS: The mean difference between the lead tips was 0.98 ± 0.49 mm (0.97 ± 0.47 mm for the left-sided electrodes and 1.00 ± 0.53 mm for the right-sided electrodes). The upper confidence interval (95% CI, 0.851 to 1.112) did not exceed the noninferiority margin established. The average radial error between lead tips was 0.74 ± 0.48 mm and the average depth error was determined to be 0.53 ± 0.40 mm. The linear Deming regression indicated a good agreement between both imaging modalities regarding accuracy relative to target. CONCLUSIONS: Intraoperative CT is noninferior to MRI for the verification of the DBS-electrode position. CT and MRI have their specific benefits, but both should be considered equally suitable for assessing accuracy.


Asunto(s)
Encéfalo/diagnóstico por imagen , Estimulación Encefálica Profunda/normas , Monitorización Neurofisiológica Intraoperatoria/normas , Imagen por Resonancia Magnética/normas , Tomografía Computarizada por Rayos X/normas , Adolescente , Adulto , Anciano , Encéfalo/cirugía , Estimulación Encefálica Profunda/instrumentación , Estimulación Encefálica Profunda/métodos , Femenino , Humanos , Monitorización Neurofisiológica Intraoperatoria/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Tomografía Computarizada por Rayos X/métodos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...