Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Environ Monit Assess ; 194(4): 309, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35353284

RESUMEN

This study was conducted to evaluate the impact of human activities on the ecological health and food chain at the shores of four Nile Islands in Great Cairo including El-Qeratten, El-Waraq, El-Zamalek, and El-Manial. Water quality, bacteria, phytoplankton, benthic algae, zooplankton, macrobenthic invertebrates, and bony fishes were examined at each island shore over two seasons including the lowest and the highest flow (February and July 2020, respectively). The obtained results showed that the average values of most of the chemicals in Nile Island's water were within the Egyptian water quality limits. Discriminant analysis of physicochemical factors revealed a similarity between El-Waraq and El-Qerateen and between El-Manial and El-Zamalek. El-Qeratten was the most polluted island. It has the highest total and fecal coliform bacteria count (3.155 and 3.050 Log MPN/100 mL, respectively). El-Zamalek shores have the highest phytoplankton (33,582 cells × 104 L-1) and zooplankton count (310,891 organisms × m-3) and phyto-biochemical values. Biochemical analysis of phytoplankton demonstrated the richness of the bulk by protein (> 85% of biomass), indicating that phytoplankton has a high nutritional value. Elevated zooplankton count was recorded at El-Zamalek, which coincided with the peak of phytoplankton abundance. Mollusca were the dominant macrobenthic invertebrates on most of the island's shores. Bony fishes were represented by 27 species and two crustaceans. The levels of the metals in fish samples were compared with the food safety guideline endorsed by the World Health Organization and Food and Agriculture Organization (WHO/FAO) to evaluate the toxicity level.


Asunto(s)
Cadena Alimentaria , Ríos , Animales , Egipto , Monitoreo del Ambiente , Islas , Ríos/química
2.
J Adv Res ; 8(6): 577-590, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28794903

RESUMEN

The plant-based-sea water culture medium is introduced to in vitro cultivation and in situ recovery of the microbiome of halophytes. The ice plant (Mesembryanthemum crystallinum) was used, in the form of juice and/or dehydrated plant powder packed in teabags, to supplement the natural sea water. The resulting culture medium enjoys the combinations of plant materials as rich source of nutrients and sea water exercising the required salt stress. As such without any supplements, the culture medium was sufficient and efficient to support very good in vitro growth of halotolerant bacteria. It was also capable to recover their in situ culturable populations in the phyllosphere, ecto-rhizosphere and endo-rhizosphere of halophytes prevailing in Lake Mariout, Egypt. When related to the total bacterial numbers measured for Suaeda pruinosa roots by quantitative-PCR, the proposed culture medium increased culturability (15.3-19.5%) compared to the conventional chemically-synthetic culture medium supplemented with (11.2%) or without (3.8%) NaCl. Based on 16S rRNA gene sequencing, representative isolates of halotolerant bacteria prevailed on such culture medium were closely related to Bacillus spp., Halomonas spp., and Kocuria spp. Seed germination tests on 25-50% sea water agar indicated positive interaction of such bacterial isolates with the germination and seedlings' growth of barley seeds.

3.
Microbiol Res ; 159(3): 285-93, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15462528

RESUMEN

Among 42 plant species representing the flora of north Sinai, two possessed sand grain sheath encasing the roots. They are Panicum turgidum Forssk. and Stipagrostis scoparia (Trin.and Rupr.) deWinter. Rhizosheaths, compared to surrounding free sand, accommodated higher population density of microorganisms including associative diazotrophs. Isolates secured belonged to the species of Bacillus circulans, Paenib. macerans (Bacillus macerans), Enterobacter agglomerans, Agrobacterium radiobacter and Chryseomonas luteola (Pseudomonos luteola). The rhizosheath potentiality in re-vegetating sand dunes and arid lands, through nitrogen fixation, plant-water relationship and root continuity for nutrient uptake, are discussed.


Asunto(s)
Clima Desértico , Bacterias Gramnegativas/aislamiento & purificación , Bacterias Grampositivas/aislamiento & purificación , Panicum/microbiología , Raíces de Plantas/microbiología , Poaceae/microbiología , Ecosistema , Egipto , Bacterias Gramnegativas/clasificación , Bacterias Grampositivas/clasificación , Bacterias Grampositivas/fisiología , Fijación del Nitrógeno , Microbiología del Suelo , Esporas Bacterianas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...