Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Microbiol ; 21(9): 3346-3363, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30945796

RESUMEN

An integrative multi-omics approach allowed monthly variations for a year of the surface metabolome and the epibacterial community of the Mediterranean Phaeophyceae Taonia atomaria to be investigated. The LC-MS-based metabolomics and 16S rDNA metabarcoding data sets were integrated in a multivariate meta-omics analysis (multi-block PLS-DA from the MixOmic DIABLO analysis) showing a strong seasonal covariation (Mantel test: p < 0.01). A network based on positive and negative correlations between the two data sets revealed two clusters of variables, one relative to the 'spring period' and a second to the 'summer period'. The 'spring period' cluster was mainly characterized by dipeptides positively correlated with a single bacterial taxon of the Alteromonadaceae family (BD1-7 clade). Moreover, 'summer' dominant epibacterial taxa from the second cluster (including Erythrobacteraceae, Rhodospirillaceae, Oceanospirillaceae and Flammeovirgaceae) showed positive correlations with few metabolites known as macroalgal antifouling defences [e.g. dimethylsulphoniopropionate (DMSP) and proline] which exhibited a key role within the correlation network. Despite a core community that represents a significant part of the total epibacteria, changes in the microbiota structure associated with surface metabolome variations suggested that both environment and algal host shape the bacterial surface microbiota.

2.
Biofouling ; 32(7): 801-13, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27353006

RESUMEN

This study aimed to improve understanding of the strategies developed by the Mediterranean seaweed Taonia atomaria to chemically control bacterial epibiosis. An experimental protocol was optimized to specifically extract algal surface-associated metabolites by a technique involving dipping in organic solvents whilst the integrity of algal cell membranes was assessed by fluorescent microscopy. This methodology was validated using mass spectrometry-based profiles of algal extracts and analysis of their principal components, which led to the selection of methanol as the extraction solvent with a maximum exposure time of 15 s. Six compounds (A-F) were identified in the resulting surface extracts. Two of these surface-associated compounds (B and C) showed selective anti-adhesion properties against reference bacterial strains isolated from artificial surfaces while remaining inactive against epibiotic bacteria of T. atomaria. Such specificity was not observed for commercial antifouling biocides and other molecules identified in the surface or whole-cell extracts of T. atomaria.


Asunto(s)
Biopelículas/efectos de los fármacos , Desinfectantes/aislamiento & purificación , Phaeophyceae/metabolismo , Phaeophyceae/microbiología , Algas Marinas/metabolismo , Algas Marinas/microbiología , Bacterias/clasificación , Adhesión Bacteriana/efectos de los fármacos , Desinfectantes/farmacología , Mar Mediterráneo , Metaboloma , Phaeophyceae/química , Algas Marinas/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA