Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(4): e25858, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38420447

RESUMEN

Nowadays, the application of nanotechnology has gained increased attention in the concrete technology field. Several applications of concrete require light weight; one such concrete used is foamed concrete (FC), which has more voids in the microstructure. In this study, nano-silica (NS) was utilized, which exhibits a pozzolanic nature, and it reacts with other pozzolanic compositions (like lime, alumina, etc.) to form hydrated compounds in concrete. Apart from these hydrated compounds, NS acts as a filler material and enhances properties of concrete such as the fresh and hardened properties. This research examines the fresh, hardened, and microstructural properties of FC blended with NS. The ratio of binder and filler used in this research is 1:1.5, with a water-to-binder ratio of 0.45 and a density of 880 kg/m3. A total of six different weight fractions of NS were added to FC mixes, namely 0%, 1%, 2%, 3%, 4%, and 5%. Properties assessed for FC blended with NS were the slump, bulk density, strength parameters (flexural, splitting tensile, and compressive strengths), morphological analysis, water absorption, and porosity. It was concluded from this study that the optimum NS utilized to improve the properties was 3%. Apart from this, the relationship between the mechanical properties and NS dosages was developed. The correlations between the compressive strength and other properties were analyzed, and relationships were developed based on the best statistical approach. This study helps academicians, researchers, and industrialists enhance the properties of FC blended with NS and their relationships to predict concrete properties from other properties.

2.
Materials (Basel) ; 15(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36233883

RESUMEN

Titanium and its alloys are commonly preferred materials used for biomedical implants. However, these alloys have issues related to corrosion resistance as a result of the aggressive attack of human body fluids. Several researchers have attempted to produce a ceramic coating via physical vapour deposition (PVD). A PVD layer consists of pores, pinholes, and columnar growth that attack the substrate as an aggressive medium. The aim of this research is to evaluate the influence of ultrasonic vibration parameters on a TiN-coated biomedical Ti-13Zr-13Nb alloy. This study used TiN to formulate and coat disk-type samples in a fixed condition. Ultrasonic vibration at fixed frequencies was applied to TiN-coated samples for three sets of exposure times. The findings revealed that all TiN-coated samples exposed to ultrasonic vibration had improved corrosion resistance compared to untreated samples. Field emission scanning electron microscopy (FESEM) was employed to analyse sample's microstructures. The top parameter (16 kHz and 11 min) yielded the most compact coating. Ultrasonic vibration's hammering effect decreased the size of microchannels in the lining and reduced the rate of corrosion attack. The nanoindentation test showed that coated ultrasonic treated samples had a higher hardness/elasticity (H/E) ratio than untreated samples.

3.
Materials (Basel) ; 15(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36079210

RESUMEN

Foamcrete is fabricated by combining mortar slurry and constant foam. Owing to the existence of air entrained in its cementitious matrix, foamcrete is tremendously brittle compared to normal-strength concrete. The addition of synthetic and natural plant fibers demonstrates an enhancement to foamcrete's mechanical performance yet exerts a harmful effect on long-term performance. Depreciation of natural plant fibers and corrosion of synthetic fibers impact the lifespan and durability properties of foamcrete. Hence, this study aims to investigate the mechanical properties and mode of failures of foamcrete reinforced with fiberglass mesh (FM). The parameters assessed were the compression, flexural, and splitting tensile strengths of 1100 kg/m3 density foamcrete confined with various layers of 145 g/m2 of FM. The optimal foamcrete mechanical properties enhancement was attained with three-layer jacketing. Notable augmentations of 108% in the compressive strength, 254% in flexural strength, and 349% in splitting tensile strength were achieved in comparison to the control specimens at day 28. The control foamcrete samples under compressive, flexural, and tensile loads encountered brittle failure in comparison to the confined foamcrete. The mode of failure under the tensile load indicates that only a slight crack occurred at the upper side and a perpendicular mark at the lateral section of the foamcrete with one to three layers of FM jacketing. Thus, the jacketing system of foamcrete with FM enhances the behavior and load carrying capacity of foamcrete to the extent of preventing the propagation of cracks.

4.
Materials (Basel) ; 15(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36079291

RESUMEN

The advancement in sustainable construction has stimulated wide-ranging investigation of construction materials and practices globally. With exceptional thermal properties, fire resistance performance, excellent strength, and outstanding durability, concrete is the utmost extensively utilized construction material around the world. Taking into consideration the quantity of concrete necessary for numerous constructions works, improving concrete sustainability would be an extremely attractive potential. Lightweight foamed concrete (LFC) is tremendously permeable, and its mechanical properties weaken with a growth in the volume of voids. Air-void segregation from solid cement phases by means of aging, drainage, and merging of voids can trigger and reduce the stability and consistency of the emitted pores, making the LFC less reliable for main utilization in load-bearing components and structural elements. In turn, to augment LFC mechanical properties, the LFC cementitious matrix can be adjusted by adding various nanoparticles. The influence of magnetite nanoparticles (MNP) in LFC was not examined in the past; hence, there is some vagueness considering the mechanism to which level the MNP can affect the LFC mechanical properties. Thus, the aim of this study is to investigate the influences of MNP on the compressive, splitting tensile, and flexural LFC of 1000 kg/m3 density. Six MNP weight fractions of 0.10%, 0.15%, 0.20%, 0.25%, 0.30%, and 0.35% were considered. The parameters accessed were compressive, splitting tensile and flexural strengths. The correlation between strength parameters was established as well. The results indicated that a 0.25% weight fraction of MNP gave the best performance in terms of compressive, flexural, and splitting tensile strengths. The presence of MNP in the LFC matrix enhances the viscosity and yield stress of the mixture as well as an augmented utilization of LFC cementitious binder content, which can sustain the integrity of the wet networks hence preventing further amalgamation and aging of the voids.

5.
Materials (Basel) ; 15(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35744318

RESUMEN

Worldwide concern and ascendancy of emissions and carbon footprints have propelled a substantial number of explorations into green concrete technology. Furthermore, construction material costs have increased along with their gradual impact on the environment, which has led researchers to recognize the importance of natural fibers in improving the durability and mechanical properties of concrete. Natural fibers are abundantly available making them relatively relevant as a reinforcing material in concrete. Presently, it should be recognized that most construction products are manufactured using resources that demand a high quantity of energy and are not sustainable, which may lead to a global crisis. Consequently, the use of plant fibers in lightweight foamed concrete (LFC) is deemed a practical possibility for making concrete a sustainable material that responds to this dilemma. The main objective of this study is to investigate the effect of the addition of lignocellulosic fibers on the performance of LFC. In this investigation, four different types of lignocellulosic plant fibers were considered which were kenaf, ramie, hemp and jute fibers. A total of ten mixes were made and tested in this study. LFC samples with a density of 700 kg/m3 and 1400 kg/m3 were fabricated. The weight fraction for the lignocellulosic plant fibers was kept at 0.45%. The durability parameters assessed were flowability, water absorption capability, porosity and ultrasonic pulse velocity (UPV). The results revealed that the presence of cellulosic plant fibers in LFC plays an important role in enhancing all the durability parameters considered in this study. For workability, the addition of ramie fiber led to the lowest slump while the inclusion of kenaf fiber provided optimum UPV. For porosity and water absorption, the addition of jute fiber led to the best results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...