Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Lab Chip ; 20(2): 215-225, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31799979

RESUMEN

The liver is critical to consider during drug development because of its central role in the handling of xenobiotics, a process which often leads to localized and/or downstream tissue injury. Our ability to predict human clinical safety outcomes with animal testing is limited due to species differences in drug metabolism and disposition, while traditional human in vitro liver models often lack the necessary in vivo physiological fidelity. To address this, increasing numbers of liver microphysiological systems (MPS) are being developed, however the inconsistency in their optimization and characterization often leads to models that do not possess critical levels of baseline performance that is required for many pharmaceutical industry applications. Herein we provide a guidance on best approaches to benchmark liver MPS based on 3 stages of characterization that includes key performance metrics and a 20 compound safety test set. Additionally, we give an overview of frequently used liver injury safety assays, describe the ideal MPS model, and provide a perspective on currently best suited MPS contexts of use. This pharmaceutical industry guidance has been written to help MPS developers and end users identify what could be the most valuable models for safety risk assessment.


Asunto(s)
Hígado/metabolismo , Preparaciones Farmacéuticas/metabolismo , Animales , Evaluación Preclínica de Medicamentos , Industria Farmacéutica , Humanos , Dispositivos Laboratorio en un Chip , Hígado/química , Preparaciones Farmacéuticas/química , Medición de Riesgo
2.
Sci Transl Med ; 11(517)2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31694927

RESUMEN

Nonclinical rodent and nonrodent toxicity models used to support clinical trials of candidate drugs may produce discordant results or fail to predict complications in humans, contributing to drug failures in the clinic. Here, we applied microengineered Organs-on-Chips technology to design a rat, dog, and human Liver-Chip containing species-specific primary hepatocytes interfaced with liver sinusoidal endothelial cells, with or without Kupffer cells and hepatic stellate cells, cultured under physiological fluid flow. The Liver-Chip detected diverse phenotypes of liver toxicity, including hepatocellular injury, steatosis, cholestasis, and fibrosis, and species-specific toxicities when treated with tool compounds. A multispecies Liver-Chip may provide a useful platform for prediction of liver toxicity and inform human relevance of liver toxicities detected in animal studies to better determine safety and human risk.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/patología , Dispositivos Laboratorio en un Chip , Hígado/patología , Animales , Biomarcadores/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Perros , Humanos , Macrófagos del Hígado/metabolismo , Hígado/lesiones , Hepatopatías/patología , Fenotipo , Ratas , Reproducibilidad de los Resultados , Factores de Riesgo , Especificidad de la Especie
3.
Toxicol Sci ; 170(2): 499-508, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31093666

RESUMEN

Most idiosyncratic drug-induced liver injury appears to result from an adaptive immune attack on the liver. Recent evidence suggests that the T-cell response may be facilitated by the loss of immune tolerance. In this study, we explored the hypothesis that constitutively released hepatocyte-derived exosomes (HDE) are important for maintaining normal liver immune tolerance. Exosomes were isolated from the conditioned medium of primary human hepatocytes via polymer precipitation. Mock controls were prepared by processing fresh medium that was not hepatocyte exposed with precipitation reagent. THP-1 monocytes were then treated with HDE or an equivalent volume of mock control for 24 h, followed by a 6-h stimulation with LPS. HDE exposure resulted in a significant decrease in the LPS-induced media levels of interleukin-1ß and interleukin-8. Gene expression profiling performed in THP-1 cells just prior to LPS-induced stimulation identified a significant decrease among genes associated with innate immune response. MicroRNA (miRNA) profiling was performed on the HDE to identify exosome contents that may drive immune suppression. Many of the predicted mRNA target genes for the most abundant microRNAs in HDE were among the differentially expressed genes in THP-1 cells. Taken together, our data suggest that HDE play a role in maintaining normal liver immune tolerance. Future experiments will explore the possibility that drugs causing idiosyncratic liver injury promote the loss of homeostatic HDE signaling.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Exosomas/fisiología , Hepatocitos/citología , Tolerancia Inmunológica , Hígado/inmunología , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Humanos , Lipopolisacáridos/farmacología , Monocitos/efectos de los fármacos , Monocitos/inmunología , Transcriptoma
4.
Clin Pharmacol Ther ; 104(6): 1240-1248, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29484632

RESUMEN

Clinical development of Hu5c8, a monoclonal antibody against CD40L intended for treatment of autoimmune disorders, was terminated due to unexpected thrombotic complications. These life-threatening side effects were not discovered during preclinical testing due to the lack of predictive models. In the present study, we describe the development of a microengineered system lined by human endothelium perfused with human whole blood, a "Vessel-Chip." The Vessel-Chip allowed us to evaluate key parameters in thrombosis, such as endothelial activation, platelet adhesion, platelet aggregation, fibrin clot formation, and thrombin anti-thrombin complexes in the Chip-effluent in response to Hu5c8 in the presence of soluble CD40L. Importantly, the observed prothrombotic effects were not observed with Hu5c8-IgG2σ designed with an Fc domain that does not bind the FcγRIIa receptor, suggesting that this approach may have a low potential risk for thrombosis. Our results demonstrate the translational potential of Organs-on-Chips, as advanced microengineered systems to better predict human response.


Asunto(s)
Anticuerpos Monoclonales Humanizados/toxicidad , Enfermedades Autoinmunes/tratamiento farmacológico , Coagulación Sanguínea/efectos de los fármacos , Ligando de CD40/antagonistas & inhibidores , Diseño de Fármacos , Desarrollo de Medicamentos/instrumentación , Factores Inmunológicos/toxicidad , Dispositivos Laboratorio en un Chip , Procedimientos Analíticos en Microchip , Trombosis/inducido químicamente , Anticuerpos Monoclonales Humanizados/metabolismo , Enfermedades Autoinmunes/inmunología , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Ligando de CD40/inmunología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Factores Inmunológicos/metabolismo , Estudios Prospectivos , Receptores de IgG/metabolismo , Estudios Retrospectivos , Medición de Riesgo , Trombosis/sangre
5.
Toxicol Sci ; 163(1): 92-100, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29385596

RESUMEN

Recent evidence supports that alterations in hepatocyte-derived exosomes (HDE) may play a role in the pathogenesis of drug-induced liver injury (DILI). HDE-based biomarkers also hold promise to improve the sensitivity of existing in vitro assays for predicting DILI liability. Primary human hepatocytes (PHH) provide a physiologically relevant in vitro model to explore the mechanistic and biomarker potential of HDE in DILI. However, optimal methods to study exosomes in this culture system have not been defined. Here we use HepG2 and HepaRG cells along with PHH to optimize methods for in vitro HDE research. We compared the quantity and purity of HDE enriched from HepG2 cell culture medium by 3 widely used methods: ultracentrifugation (UC), OptiPrep density gradient ultracentrifugation (ODG), and ExoQuick (EQ)-a commercially available exosome precipitation reagent. Although EQ resulted in the highest number of particles, UC resulted in more exosomes as indicated by the relative abundance of exosomal CD63 to cellular prohibitin-1 as well as the comparative absence of contaminating extravesicular material. To determine culture conditions that best supported exosome release, we also assessed the effect of Matrigel matrix overlay at concentrations ranging from 0 to 0.25 mg/ml in HepaRG cells and compared exosome release from fresh and cryopreserved PHH from same donor. Sandwich culture did not impair exosome release, and freshly prepared PHH yielded a higher number of HDE overall. Taken together, our data support the use of UC-based enrichment from fresh preparations of sandwich-cultured PHH for future studies of HDE in DILI.


Asunto(s)
Biomarcadores/análisis , Enfermedad Hepática Inducida por Sustancias y Drogas , Técnicas de Cocultivo/métodos , Exosomas/ultraestructura , Hepatocitos/citología , Ultracentrifugación/métodos , Adulto , Colágeno/química , Criopreservación , Medios de Cultivo/química , Combinación de Medicamentos , Exosomas/metabolismo , Femenino , Células Hep G2 , Humanos , Laminina/química , Masculino , Persona de Mediana Edad , Cultivo Primario de Células , Prohibitinas , Proteoglicanos/química , Proteínas Represoras/análisis , Tetraspanina 30/análisis
6.
Toxicol Sci ; 163(2): 374-384, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28206647

RESUMEN

TAK-875, a GPR40 agonist, was withdrawn from Phase III clinical trials due to drug-induced liver injury (DILI). Mechanistic studies were conducted to identify potential DILI hazards (covalent binding burden (CVB), hepatic transporter inhibition, mitochondrial toxicity, and liver toxicity in rats) associated with TAK-875. Treatment of hepatocytes with radiolabeled TAK-875 resulted in a CVB of 2.0 mg/day, which is above the threshold of 1 mg/day considered to be a risk for DILI. Covalent binding to hepatocytes was due to formation of a reactive acyl glucuronide (AG) and, possibly, an acyl-CoA thioester intermediate. Formation of TAK-875AG in hepatocytes and/or in vivo was in the order of non-rodents > human (in vitro only) > rat. These data suggest that non-rodents, and presumably humans, form TAK-875AG more efficiently than rats, and that AG-mediated toxicities in rats may only occur at high doses. TAK-875 (1000 mg/kg/day) formed significant amounts of AG metabolite (≤32.7 µM) in rat liver that was associated with increases in ALT (×4), bilirubin (×9), and bile acids (×3.4), and microscopic findings of hepatocellular hypertrophy and single cell necrosis. TAK-875 and TAK-875AG had similar potencies (within 3-fold) for human multi-drug resistant associated protein 2/4 (MRP2/4) and bile salt export pump, but TAK-875AG was exceptionally potent against MRP3 (0.21 µM). Inhibition of MRPs may contribute to liver accumulation of TAK-875AG. TAK-875 also inhibited mitochondrial respiration in HepG2 cells, and mitochondrial Complex 1 and 2 activities in isolated rat mitochondria. In summary, formation of TAK-875AG, and possibly TAK-875CoA in hepatocytes, coupled with inhibition of hepatic transporters and mitochondrial respiration may be key contributors to TAK-875-mediated DILI.


Asunto(s)
Benzofuranos/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Hepatocitos/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Transportadores de Anión Orgánico/antagonistas & inhibidores , Sulfonas/toxicidad , Animales , Benzofuranos/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Perros , Relación Dosis-Respuesta a Droga , Expresión Génica/efectos de los fármacos , Células Hep G2 , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Macaca fascicularis , Mitocondrias Hepáticas/fisiología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Transportadores de Anión Orgánico/genética , Consumo de Oxígeno/efectos de los fármacos , Unión Proteica , Ratas , Especificidad de la Especie , Sulfonas/metabolismo
7.
J Med Chem ; 60(11): 4559-4572, 2017 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-28493698

RESUMEN

The synthesis and preclinical characterization of novel 4-(R)-methyl-6,7-dihydro-4H-triazolo[4,5-c]pyridines that are potent and selective brain penetrant P2X7 antagonists are described. Optimization efforts based on previously disclosed unsubstituted 6,7-dihydro-4H-triazolo[4,5-c]pyridines, methyl substituted 5,6,7,8-tetrahydro[1,2,4]triazolo[4,3-a]pyrazines, and several other series lead to the identification of a series of 4-(R)-methyl-6,7-dihydro-4H-triazolo[4,5-c]pyridines that are selective P2X7 antagonists with potency at the rodent and human P2X7 ion channels. These novel P2X7 antagonists have suitable physicochemical properties, and several analogs have an excellent pharmacokinetic profile, good partitioning into the CNS and show robust in vivo target engagement after oral dosing. Improvements in metabolic stability led to the identification of JNJ-54175446 (14) as a candidate for clinical development. The drug discovery efforts and strategies that resulted in the identification of the clinical candidate are described herein.


Asunto(s)
Antagonistas del Receptor Purinérgico P2X/farmacología , Piridinas/farmacología , Receptores Purinérgicos P2X7/efectos de los fármacos , Animales , Disponibilidad Biológica , Humanos , Antagonistas del Receptor Purinérgico P2X/farmacocinética
8.
Toxicol Pathol ; 45(3): 372-380, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28351296

RESUMEN

An Innovation and Quality (IQ) Consortium focus group conducted a cross-company survey to evaluate current practices and perceptions around the use of animal models of disease (AMDs) in nonclinical safety assessment of molecules in clinical development. The IQ Consortium group is an organization of pharmaceutical and biotechnology companies with the mission of advancing science and technology. The survey queried the utilization of AMDs during drug discovery in which drug candidates are evaluated in efficacy models and limited short-duration non-Good Laboratory Practices (GLP) toxicology testing and during drug development in which drug candidates are evaluated in GLP toxicology studies. The survey determined that the majority of companies used AMDs during drug discovery primarily as a means for proactively assessing potential nonclinical safety issues prior to the conduct of toxicology studies, followed closely by the use of AMDs to better understand toxicities associated with exaggerated pharmacology in traditional toxicology models or to derisk issues when the target is only expressed in the disease state. In contrast, the survey results indicated that the use of AMDs in development is infrequent, being used primarily to investigate nonclinical safety issues associated with targets expressed only in disease states and/or in response to requests from global regulatory authorities.


Asunto(s)
Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Industria Farmacéutica , Animales , Toma de Decisiones en la Organización , Evaluación Preclínica de Medicamentos/estadística & datos numéricos , Industria Farmacéutica/legislación & jurisprudencia , Industria Farmacéutica/organización & administración , Industria Farmacéutica/normas , Regulación Gubernamental , Encuestas y Cuestionarios
9.
Toxicol Sci ; 155(2): 379-388, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28025230

RESUMEN

The objective of this work was to investigate the mechanisms of hepatobiliary toxicity caused by thienopyrimidone MCHR1 antagonists using BMS-773174 as a tool molecule. Co-administration of the pan CYP inhibitor 1-aminobenzotriazole with BMS-773174 prevented hepatobiliary damage, and direct delivery of the diol metabolite BMS-769750 caused hepatobiliary toxicity, identifying the diol and possibly its downstream hydroxyacid (BMS-800754) metabolite as the toxic species. Rat liver gene expression revealed treatment-related changes in hepatic transporters and induction of oval cell-specific genes including deleted malignant tumor 1 (Dmbt1). The metabolites did not alter hepatic transporter activities, suggesting that transporter-mediated cholestasis was not involved. Because injury to biliary epithelium can result in adaptive hyperplasia, rat biliary epithelial cells (BECs) were isolated and exposed to the oxidative metabolites. BMS-769750 was cytotoxic to BECs, but not rat hepatocytes, suggesting a role of the diol in biliary epithelial injury. BMS-800754 was cytotoxic to rat hepatocytes therefore its contribution to hepatocyte injury in rats is a possibility. Induction of Dmbt1 in rat BECs was investigated because of its role in hepatic progenitor cell differentiation/proliferation during injury. Dmbt1 mRNA was induced by BMS-769750, but not BMS-800754 in BECs; this induction and cellular injury was confirmed with diol metabolites formed by other compounds with the same hepatobiliary liability. In conclusion, hepatobiliary injury by thienopyrimidinone MCHR1 antagonists was driven through a CYP-mediated bioactivation pathway. Induction of Dmbt1 mRNA coupled with cellular injury suggests that injury of biliary epithelium may be the first step toward an adaptive proliferative response causing BDH by these compounds.


Asunto(s)
Sistema Biliar/efectos de los fármacos , Compuestos Heterocíclicos con 2 Anillos/farmacología , Hígado/efectos de los fármacos , Receptores de Somatostatina/antagonistas & inhibidores , Animales , Relación Dosis-Respuesta a Droga , Perfilación de la Expresión Génica , Compuestos Heterocíclicos con 2 Anillos/química , Hígado/metabolismo , Masculino , Microscopía Electrónica de Transmisión , Ratas , Ratas Sprague-Dawley
10.
Biomed Microdevices ; 18(4): 73, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27464497

RESUMEN

The vascular endothelium and shear stress are critical determinants of physiological hemostasis and platelet function in vivo, yet current diagnostic and monitoring devices do not fully incorporate endothelial function under flow in their assessment and, therefore, they can be unreliable and inaccurate. It is challenging to include the endothelium in assays for clinical laboratories or point-of-care settings because living cell cultures are not sufficiently robust. Here, we describe a microfluidic device that is lined by a human endothelium that is chemically fixed, but still retains its ability to modulate hemostasis under continuous flow in vitro even after few days of storage. This device lined with a fixed endothelium supports formation of platelet-rich thrombi in the presence of physiological shear, similar to a living arterial vessel. We demonstrate the potential clinical value of this device by showing that thrombus formation and platelet function can be measured within minutes using a small volume (0.5 mL) of whole blood taken from subjects receiving antiplatelet medications. The inclusion of a fixed endothelial microvessel will lead to biomimetic analytical devices that can potentially be used for diagnostics and point-of-care applications.


Asunto(s)
Endotelio Vascular/efectos de los fármacos , Dispositivos Laboratorio en un Chip , Trombosis/diagnóstico , Plaquetas/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Fibrina/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inhibidores de Agregación Plaquetaria/farmacología , Sistemas de Atención de Punto , Estrés Mecánico , Trombosis/sangre , Trombosis/tratamiento farmacológico
11.
Toxicol Sci ; 105(1): 221-9, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18539914

RESUMEN

These studies describe the effect of N,N-diethyl-4-(phenyl-piperidin-4-ylidenemethyl)-benzamide (AR-M100390), a delta-opioid agonist, on the pancreas and its mechanisms for pancreatic toxicity. Rats were treated with 5, 100, and 600 micromol/kg of AR-M100390 for 3 and/or 7 days; another group of rats treated with 600 micromol/kg of compound were allowed to recover for 14 days. AR-M100390 (600 micromol/kg) caused vacuolation in the beta-cell of the rat pancreas that was associated with depletion of insulin and hyperglycemia after 7 days of dosing. The loss of insulin by AR-M100390 was due to specific inhibition of rat insulin2 mRNA transcription in vivo. Insulin depletion and hyperglycemia were reversible. The effects of AR-M100390 in rats were reproduced in the rat pancreatic beta-cell line RINm5F, where it inhibited intracellular insulin content and secretion without affecting cell survival. Loss of insulin in vitro was also a result of specific inhibition of insulin2 mRNA transcription and was reversible. Pretreatment of cells with the delta-opioid antagonist naltrindole or pertussis toxin did not reverse loss of insulin in AR-M100390-treated cells suggesting that the effects were not mediated by the delta-opioid receptor. AR-M100390 inhibited KCl-mediated calcium mobilization in RINm5F cells, suggesting that L-type calcium channels found in these cells and in pancreatic beta-cells may partially play a role in the inhibition of insulin secretion by this compound. In summary, the in vitro and in vivo studies suggest that inhibition of insulin by AR-M100390 is due to a combination of inhibition of insulin synthesis and/or release.


Asunto(s)
Benzamidas/toxicidad , Insulina/metabolismo , Páncreas/efectos de los fármacos , Piperidinas/toxicidad , Receptores Opioides delta/agonistas , Animales , Glucemia/análisis , Calcio/metabolismo , Canales de Calcio Tipo L/fisiología , Células Cultivadas , Ciclizina/toxicidad , Relación Dosis-Respuesta a Droga , Insulina/genética , Páncreas/metabolismo , ARN Mensajero/análisis , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...