Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Brain Behav Immun ; 92: 90-101, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33242651

RESUMEN

The mitochondrial pyruvate carrier (MPC) is an inner-membrane transporter that facilitates pyruvate uptake from the cytoplasm into mitochondria. We previously reported that MPC1 protein levels increase in the hypothalamus of animals during fever induced by lipopolysaccharide (LPS), but how this increase contributes to the LPS responses remains to be studied. Therefore, we investigated the effect of UK 5099, a classical MPC inhibitor, in a rat model of fever, on hypothalamic mitochondrial function and neuroinflammation in LPS-stimulated preoptic area (POA) primary microcultures. Intracerebroventricular administration of UK 5099 reduced the LPS-induced fever. High-resolution respirometry revealed an increase in oxygen consumption and oxygen flux related to ATP synthesis in the hypothalamic homogenate from LPS-treated animals linked to mitochondrial complex I plus II. Preincubation with UK 5099 prevented the LPS-induced increase in oxygen consumption, ATP synthesis and spare capacity only in complex I-linked respiration and reduced mitochondrial H2O2 production. In addition, treatment of rat POA microcultures with UK 5099 reduced the secretion of the proinflammatory and pyrogenic cytokines TNFα and IL-6 as well as the immunoreactivity of inflammatory transcription factors NF-κB and NF-IL6 four hours after LPS stimulation. These results suggest that the regulation of mitochondrial pyruvate metabolism through MPC inhibition may be effective in reducing neuroinflammation and fever.


Asunto(s)
Peróxido de Hidrógeno , Transportadores de Ácidos Monocarboxílicos , Animales , Fiebre/inducido químicamente , Lipopolisacáridos , Mitocondrias , Ácido Pirúvico , Ratas
2.
Front Mol Neurosci ; 12: 307, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31920538

RESUMEN

Cytoglobin (Cygb) is a hexacoordinate protein, associated with the transport of oxygen, nitric oxide scavenging, tumor suppression and protection against oxidative stress and inflammation. This protein is expressed in brain areas including the preoptic area (POA) of the anterior hypothalamus, the region responsible for the regulation of body temperature. In this study, we show that Cygb is upregulated in the rat hypothalamus 2.5 h and 5 h after intravenous administration of lipopolysaccharide (LPS). We investigated the effect of treatment with Cygb in POA primary cultures stimulated with LPS for 4 h. The levels of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) were measured and the results showed that Cygb reduced the concentrations of both cytokines. We further observed a decrease in immunoreactivity of the inflammatory transcription factor nuclear factor-κB (NF-κB), but not NF-IL6 and STAT3, in the nucleus of Cygb-treated POA cells. These findings suggest that Cygb attenuates the secretion of IL-6 and TNF-α in LPS-stimulated POA primary cultures via inhibition of the NF-κB signaling pathway, indicating that this protein might play an important role in the control of neuroinflammation and fever.

3.
J Appl Physiol (1985) ; 116(9): 1220-9, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24651990

RESUMEN

This study compared the involvement of interleukin-1ß (IL-1ß), IL-6, and tumor necrosis factor-α (TNF-α) within the central nervous system (CNS) in the febrile response induced by zymosan (zym) and lipopolysaccharide (LPS). In addition, we investigated whether zym could activate important regions related to fever; namely, the vascular organ of the laminae terminalis (OVLT) and the median preoptic nucleus (MnPO). Intraperitoneal injection of zym (1, 3, and 10 mg/kg) induced a dose-related increase in core temperature. Zym (3 mg/kg) also reduced tail skin temperature, suggesting the activation of heat conservation mechanisms, as expected, during fever. LPS increased plasma levels of TNF-α measured at 1 h, IL-1ß measured at 2 h, and IL-6 measured at 3 h after injection. Zym increased circulating levels of IL-6 but not those of TNF-α or IL-1ß at the same time points. In addition, an intracerebroventricular injection of antibodies against TNF-α (2.5 µg) and IL-6 (10 µg) or the IL-1 receptor antagonist (160 ng) reduced the febrile response induced by zym and LPS. Zym (100 µg/ml) also increased intracellular calcium concentration in the OVLT and MnPO from rat primary neuroglial cultures and increased release of TNF-α and IL-6 into the supernatants of these cultures. Together, these results suggest that TNF-α, IL-1ß, and IL-6 within the CNS participate in the febrile response induced by zym. However, the time course of release of these cytokines may be different from that of LPS. In addition, zym can directly activate the brain areas related to fever.


Asunto(s)
Encéfalo/metabolismo , Citocinas/metabolismo , Fiebre/inducido químicamente , Fiebre/metabolismo , Zimosan/toxicidad , Animales , Animales Recién Nacidos , Encéfalo/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA