Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Mater ; 35(7): 2797-2807, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37063594

RESUMEN

Carbosilane dendrimers are hyperbranched lipophilic scaffolds widely explored in biomedical applications. This work exploits, for the first time, the ability of these scaffolds to generate functional hydrogels with amphiphilic properties. The monodispersity and multivalency enable a precise synthetic control of the network, while the lipophilicity improves the compatibility with poorly soluble cargo. The first family of cleavable carbosilane dendrimers was designed for this purpose, overcoming one of the main drawbacks of these type of dendrimers. Biodegradable dendritic low-swelling hydrogels with aromatic nanodomains were easily prepared using the highly efficient click thiol-ene chemistry. Our studies through electron-paramagnetic resonance, molecular dynamics simulations, and experimental assays confirmed the impact of the carbosilane dendritic nanodomains in both the encapsulation and the release pattern of model drugs such as ibuprofen and curcumin. Curcumin-loaded hydrogels were further tested in in vitro assays against advanced prostate cancer cells. The dendritic hydrogels not only enabled drugs encapsulation; as proof of concept, ibuprofen was efficiently attached via fluoride-promoted esterification and was enzymatically cleaved, achieving a controlled release over time.

2.
J Phys Chem B ; 126(46): 9686-9694, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36354364

RESUMEN

Polyamidoamine (PAMAM) dendrimers are exploited as drug carriers in various biomedical research fields, especially cancer therapy. The present study analyzes the interactions occurring between differently functionalized PAMAM dendrimers, namely, amine, acetamide, and 3-methoxy-carbonyl-5-pyrrolidonyl ("pyrrolidone"), and model membranes, namely, sodium dodecyl sulfate (SDS), sodium hexadecylsulfate (SHS) micelles, and egg-lecithin liposomes. For this purpose, the dendrimers were spin-labeled with the 3-carbamoyl-PROXYL radical. 1H-NMR spectra allowed the verification not only that labeling was successful but also that acetamide and (even more so) pyrrolidone functions shield the proton signals from the influence of the neighboring nitroxide groups. The computer-aided analysis of the electron paramagnetic resonance (EPR) spectra showed that the dendrimers with the acetamide function largely (60%) entered the SDS-micelles interface, while the amino-dendrimer electrostatically interacted with both the SDS and SHS surface forming dendrimer aggregates in solution. The pyrrolidone-dendrimers showed an intermediate behavior between those with the amino and acetamide functions. The acetamide- and pyrrolidone-dendrimers weakly interacted with the lecithin liposome surface, with a synergy between hydrophilic and hydrophobic interactions. Conversely, liposomes/amino-dendrimers interactions were quite strong and led to dendrimer aggregation at the liposome surface in solution. This information showed that acetamide- and pyrrolidone-dendrimers may be used as good alternatives to amino-dendrimers for drug delivery.


Asunto(s)
Liposomas , Micelas , Liposomas/química , Marcadores de Spin , Lecitinas , Poliaminas/química , Membrana Celular , Acetamidas
3.
J Am Chem Soc ; 144(29): 13276-13284, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35819842

RESUMEN

The immobilization of homogeneous catalysts onto supports to improve recyclability while maintaining catalytic efficiency is often a trial-and-error process limited by poor control of the local catalyst environment and few strategies to append catalysts to support materials. Here, we introduce a modular heterogenous catalysis platform that addresses these challenges. Our approach leverages the well-defined interiors of self-assembled Pd12L24 metal-organic cages/polyhedra (MOCs): simple mixing of a catalyst-ligand of choice with a polymeric ligand, spacer ligands, and a Pd salt induces self-assembly of Pd12L24-cross-linked polymer gels featuring endohedrally catalyst-functionalized junctions. Semi-empirical calculations show that catalyst incorporation into the MOC junctions of these materials has minimal affect on the MOC geometry, giving rise to well-defined nanoconfined catalyst domains as confirmed experimentally using several techniques. Given the unique network topology of these freestanding gels, they are mechanically robust regardless of their endohedral catalyst composition, allowing them to be physically manipulated and transferred from one reaction to another to achieve multiple rounds of catalysis. Moreover, by decoupling the catalyst environment (interior of MOC junctions) from the physical properties of the support (the polymer matrix), this strategy enables catalysis in environments where homogeneous catalyst analogues are not viable, as demonstrated for the Au(I)-catalyzed cyclization of 4-pentynoic acid in aqueous media.


Asunto(s)
Metales , Polímeros , Catálisis , Geles , Ligandos
4.
Int J Mol Sci ; 23(10)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35628128

RESUMEN

Lipid structural diversity strongly affects biomembrane chemico-physical and structural properties in addition to membrane-associated events. At high concentrations, cholesterol increases membrane order and rigidity, while polyunsaturated lipids are reported to increase disorder and flexibility. How these different tendencies balance in composite bilayers is still controversial. In this study, electron paramagnetic resonance spectroscopy, small angle neutron scattering, and neutron reflectivity were used to investigate the structural properties of cholesterol-containing lipid bilayers in the fluid state with increasing amounts of polyunsaturated omega-3 lipids. Either the hybrid 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine or the symmetric 1,2-docosahexaenoyl-sn-glycero-3-phosphocholine were added to the mixture of the naturally abundant 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine and cholesterol. Our results indicate that the hybrid and the symmetric omega-3 phospholipids affect the microscopic organization of lipid bilayers differently. Cholesterol does not segregate from polyunsaturated phospholipids and, through interactions with them, is able to suppress the formation of non-lamellar structures induced by the symmetric polyunsaturated lipid. However, this order/disorder balance leads to a bilayer whose structural organization cannot be ascribed to either a liquid ordered or to a canonical liquid disordered phase, in that it displays a very loose packing of the intermediate segments of lipid chains.


Asunto(s)
Ácidos Grasos Omega-3 , Membrana Dobles de Lípidos , Colesterol/química , Membrana Dobles de Lípidos/química , Fosfolípidos/química , Fosforilcolina
5.
Nanoscale ; 14(12): 4654-4670, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35262128

RESUMEN

Anti-(ds)-DNA antibodies are the serological hallmark of Systemic Lupus Erythematosus (SLE). They assemble in the bloodstream with (ds)-DNA, forming immunocomplexes, which spread all over the body causing, among the other symptoms, lupic glomerulonephritis. Pathological manifestations of the disease may be reduced by destabilizing or inhibiting the formation of the immunocomplexes. In this respect, glycodendrimers showed peculiar interacting abilities towards this kind of biomolecule. Various generations of open-shell maltose-decorated poly(amidoamine) (PAMAM) and poly(propyleneimine) (PPI) dendrimers and two oligopeptides with different polyethylene glycol units were synthesized and characterized, and then tested for their anti-SLE activity. The activity of glycodendrimers and oligopeptides was evaluated in human plasma from patients with SLE, compared to healthy plasma, by means of an enzyme-linked immunosorbent assay (ELISA), and electron paramagnetic resonance (EPR) characterization using spin-label and spin-probe techniques. Different strategies for the immunocomplex formation were tested. The results show that both kinds of glycodendrimers and oligopeptides inhibited the formation of immunocomplexes. Also, a partial breakdown of preformed immunocomplexes was observed. Both ELISA and EPR analyses indicated a better activity of glycodendrimers compared to oligopeptides, the 3rd generation PPI dendrimer being the most promising against SLE. This study highlights the possibility to develop a new class of dendritic therapeutics for the treatment of Lupus in pre-clinical studies.


Asunto(s)
Dendrímeros , Lupus Eritematoso Sistémico , ADN , Dendrímeros/química , Dendrímeros/farmacología , Ensayo de Inmunoadsorción Enzimática , Humanos , Lupus Eritematoso Sistémico/tratamiento farmacológico , Maltosa/química , Maltosa/farmacología , Oligopéptidos/farmacología
6.
Chemosphere ; 291(Pt 3): 133067, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34838598

RESUMEN

This study explored the morphological, mineralogical, and physico-chemical features of carcinogenic erionite and other possibly hazardous zeolites, such as mesolite and thomsonite, while also investigating the interacting capability of the mineral surface at the liquid/solid interface. Extremely fibrous erionite is K+ and Ca2+-rich and shows the highest Si/Al ratio (3.38) and specific surface area (8.14 m2/g). Fibrous mesolite is Na+ and Ca2+-rich and displays both a lower Si/Al ratio (1.56) and a smaller specific surface area (1.56 m2/g). The thomsonite composition shows the lowest values of Si/Al ratio (1.23) and specific surface area (0.38 m2/g). Electron paramagnetic resonance data from selected spin probes reveal that erionite has a homogeneous site distribution and interacts well with all spin probes. The surfaces of mesolite and thomsonite are less homogeneous and closer polar sites were found through consequent interaction with the probes. The mesolite surface can also clearly interact but with a lower strength and may represent a potential health hazard for humans, though with a lower degree if compared to erionite. The thomsonite surface is not inert and interacts with the probes with a low-grade capability. We can expect small fragments of thomsonite to interact with the biological environment, though with a low-grade intensity.


Asunto(s)
Zeolitas , Carcinógenos , Espectroscopía de Resonancia por Spin del Electrón , Humanos
7.
Biol Chem ; 403(3): 345-360, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34883001

RESUMEN

The activity and interacting ability of a polyamidoamine (PAMAM) dendrimer modified with 4-N-methylpiperazine-1,8-naphthalimide units (termed D) and complexed by Cu(ii) ions, towards healthy and cancer cells were studied. Comparative electron paramagnetic resonance (EPR) studies of the Cu(ii)-D complex are presented: coordination mode, chemical structure, flexibility and stability of these complexes, in the absence and presence of myeloid cancer cells and peripheral blood mononuclear cells (PBMC). The interactions of Cu(ii) ions in the biological media at different equilibrium times were studied, highlighting different stability and interacting conditions with the cells. Furthermore, flow cytometry and confocal analysis, trace the peculiar properties of the dendrimers in PBMC and U937 cells. Indeed, a new probe (Fly) was used as a potential fluorescent tool for biological imaging of Cu(ii). The study highlights that dendrimer and, mainly, the Cu(ii) metallodendrimer are cytotoxic agents for the cells, specifically for U937 tumor cells, inducing mitochondrial dysfunction, ROS increase and lysosome involvement. The metallodendrimer shows antitumor selectivity, fewer affecting healthy PBMC, inducing a massive apoptotic cell death on U937 cells, in line with the high stability of this complex, as verified by EPR studies. The results underline the potentiality of this metallodendrimer to be used as anticancer drug.


Asunto(s)
Antineoplásicos , Dendrímeros , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacología , Dendrímeros/química , Dendrímeros/metabolismo , Dendrímeros/farmacología , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Leucocitos Mononucleares , Naftalimidas/farmacología , Poliaminas
8.
Eur J Med Chem ; 215: 113292, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33631696

RESUMEN

Iminopyridine-decorated carbosilane metallodendrimers have recently emerged as a promising strategy in the treatment of cancer diseases. Their unique features such as the nanometric size, the multivalent nature and the structural perfection offer an extraordinary platform to explore structure-to-property relationships. Herein, we showcase the outstanding impact on the antitumor activity of a parameter not explored before: the iminopyridine substituents in meta position. New Cu(II) carbosilane metallodendrimers, bearing methyl or methoxy substituents in the pyridine ring, were synthesized and thoroughly characterized. Electron Paramagnetic Resonance (EPR) was exploited to unveil the properties of the metallodendrimers. This study confirmed the presence of different coordination modes of the Cu(II) ion (Cu-N2O2, Cu-N4 and Cu-O4), whose ratios were determined by the structural features of the dendritic molecules. These metallodendrimers exhibited IC50 values in the low micromolar range (<6 µM) in tumor cell lines such as HeLa and MCF-7. The subsequent in vitro assays on both healthy (PBMC) and tumor (U937) myeloid cells revealed two key facts which improved the cytotoxicity and selectivity of the metallodrug: First, maximizing the Cu-N2O2 coordination mode; second, adequately selecting the pair ring-substituent/metal-counterion. The most promising candidates, G1(-CH3)Cl (8) and G1(-OCH3)NO3(17), exhibited a substantial increase in the antitumor activity in U937 tumor cells, compared to the non-substituted counterparts, probably through two different ROS-production pathways.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Dendrímeros/farmacología , Piridinas/farmacología , Silanos/farmacología , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Complejos de Coordinación/síntesis química , Cobre/química , Dendrímeros/síntesis química , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Piridinas/síntesis química , Especies Reactivas de Oxígeno/metabolismo , Silanos/síntesis química
9.
Soft Matter ; 16(46): 10425-10438, 2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33165495

RESUMEN

Polyunsaturated omega-3 fatty acid docosahexaenoic acid (DHA) is found in very high concentrations in a few peculiar tissues, suggesting that it must have a specialized role. DHA was proposed to affect the function of the cell membrane and related proteins through an indirect mechanism of action, based on the DHA-phospholipid effects on the lipid bilayer structure. In this respect, most studies have focused on its influence on lipid-rafts, somehow neglecting the analysis of effects on liquid disordered phases that constitute most of the cell membranes, by reporting in these cases only a general fluidifying effect. In this study, by combining neutron reflectivity, cryo-transmission electron microscopy, small angle neutron scattering, dynamic light scattering and electron paramagnetic resonance spectroscopy, we characterize liquid disordered bilayers formed by the naturally abundant 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and different contents of a di-DHA glycero-phosphocholine, 22:6-22:6PC, from both a molecular/microscopic and supramolecular/mesoscopic viewpoint. We show that, below a threshold concentration of about 40% molar percent, incorporation of 22:6-22:6PC in the membrane increases the lipid dynamics slightly but sufficiently to promote the membrane deformation and increase of multilamellarity. Notably, beyond this threshold, 22:6-22:6PC disfavours the formation of lamellar phases, leading to a phase separation consisting mostly of small spherical particles that coexist with a minority portion of a lipid blob with water-filled cavities. Concurrently, from a molecular viewpoint, the polyunsaturated acyl chains tend to fold and expose the termini to the aqueous medium. We propose that this peculiar tendency is a key feature of the DHA-phospholipids making them able to modulate the local morphology of biomembranes.


Asunto(s)
Ácidos Grasos Omega-3 , Membrana Dobles de Lípidos , Ácidos Docosahexaenoicos , Microdominios de Membrana , Fosfatidilcolinas , Fosfolípidos
10.
Langmuir ; 36(43): 12816-12829, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-32993292

RESUMEN

Copper (Cu)(II) ions, mainly an excess amount, play a negative role in the course of several diseases, like cancers, neurodegenerative diseases, and the so-called Wilson disease. On the contrary, Cu(II) ions are also capable of improving anticancer drug efficiency. For this reason, it is of great interest to study the interacting ability of Cu(II)-nanodrug and Cu(II)-nanocarrier complexes with cell membranes for their potential use as nanotherapeutics. In this study, the complex interaction between 1,4,7,10-tetraazacyclododecan-N,N',N'',N'''-tetraacetic acid (DOTA)-functionalized poly(propyleneimine) (PPI) glycodendrimers and Cu(II) ions and/or neutral and anionic lipid membrane models using different liposomes is described. These interactions were investigated via dynamic light scattering (DLS), ζ-potential (ZP), electron paramagnetic resonance (EPR), fluorescence anisotropy, and cryogenic transmission electron microscopy (cryo-TEM). Structural and dynamic information about the PPI glycodendrimer and its Cu(II) complexes toward liposomes was obtained via EPR. At the binding site Cu-N2O2 coordination prevails, while at the external interface, this coordination partially weakens due to competitive dendrimer-liposome interactions, with only small liposome structural perturbation. Fluorescence anisotropy was used to evaluate the membrane fluidity of both the hydrophobic and hydrophilic parts of the lipid bilayer, while DLS and ZP allowed us to determine the distribution profile of the nanoparticle (PPI glycodendrimer and liposomes) size and surface charge, respectively. From this multitechnique approach, it is deduced that DOTA-PPI glycodendrimers selectively extract Cu(II) ions from the bioenvironment, while these complexes interact with the liposome surface, preferentially with even more negatively charged liposomes. However, these complexes are not able to cross the cell membrane model and poorly perturb the membrane structure, showing their potential for biomedical use.


Asunto(s)
Liposomas , Fluidez de la Membrana , Espectroscopía de Resonancia por Spin del Electrón , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos
11.
Mol Pharm ; 17(7): 2691-2702, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32484691

RESUMEN

Copper(II) carbosilane metallodendrimers are promising nanosized anticancer metallodrugs. The precise control on their design enables an accurate structure-to-activity study. We hypothesized that different structural features, such as the dendrimer generation and metal counterion, modulate the interaction with tumor cells, and subsequently, the effectivity and selectivity of the therapy. A computer-aided analysis of the electron paramagnetic resonance (EPR) spectra allowed us to obtain dynamical and structural details on the interactions over time between the dendrimers and the cells, the myeloid U937 tumor cells and peripheral blood mononuclear cells (PBMC). The intracellular fate of the metallodendrimers was studied through a complete in vitro evaluation, including cytotoxicity, cytostaticity, and sublethal effects regarding mitochondria function, lysosomal compartments, and autophagic organelle involvement. EPR results confirmed a higher membrane stabilization for chloride dendrimers and low generation complexes, which ultimately influence the metallodrug uptake and intracellular fate. The in vitro evaluation revealed that Cu(II) metallodendrimers are cytostatic and moderate cytotoxic agents for U937 tumor cells, inducing death processes through the mitochondria-lysosome axis as well as autophagic vacuole formation, while barely affecting healthy monocytes. The study provided valuable insight into the mechanism of action of these nanosized metallodrugs and relevant structural parameters affecting the activity.


Asunto(s)
Cobre/química , Citotoxinas/administración & dosificación , Dendrímeros/administración & dosificación , Espectroscopía de Resonancia por Spin del Electrón/métodos , Leucocitos Mononucleares/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Silanos/química , Autofagia , Línea Celular Tumoral , Citotoxinas/química , Citotoxinas/toxicidad , Dendrímeros/química , Dendrímeros/metabolismo , Dendrímeros/toxicidad , Humanos , Lisosomas/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/fisiología
12.
Molecules ; 25(1)2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31947792

RESUMEN

Chlorophyll a derivatives were integrated in "all solid-state" dye sensitized solar cells (DSSCs) with a mesoporous TiO2 electrode and 2',2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene as the hole-transport material. Despite modest power conversion efficiencies (PCEs) between 0.26% and 0.55% achieved for these chlorin dyes, a systematic investigation was carried out in order to elucidate their main limitations. To provide a comprehensive understanding of the parameters (structure, nature of the anchoring group, adsorption …) and their relationship with the PCEs, density functional theory (DFT) calculations, optical and photovoltaic studies and electron paramagnetic resonance analysis exploiting the 4-carboxy-TEMPO spin probe were combined. The recombination kinetics, the frontier molecular orbitals of these DSSCs and the adsorption efficiency onto the TiO2 surface were found to be the key parameters that govern their photovoltaic response.


Asunto(s)
Clorofila/química , Energía Solar , Titanio/química , Porosidad
13.
Chemosphere ; 238: 124560, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31437632

RESUMEN

Plastics are the most abundant marine debris globally dispersed in the oceans and its production is rising with documented negative impacts in marine ecosystems. However, the chemical-physical and biological interactions occurring between plastic and planktonic communities of different types of microorganisms are poorly understood. In these respects, it is of paramount importance to understand, on a molecular level on the surface, what happens to plastic fragments when dispersed in the ocean and directly interacting with phytoplankton assemblages. This study presents a computer-aided analysis of electron paramagnetic resonance (EPR) spectra of selected spin probes able to enter the phyoplanktonic cell interface and interact with the plastic surface. Two different marine phytoplankton species were analyzed, such as the diatom Skeletonema marinoi and dinoflagellate Lingulodinium polyedrum, in absence and presence of polyethylene terephthalate (PET) fragments in synthetic seawater (ASPM), in order to in-situ characterize the interactions occurring between the microalgal cells and plastic surfaces. The analysis was performed at increasing incubation times. The cellular growth and adhesion rates of microalgae in batch culture medium and on the plastic fragments were also evaluated. The data agreed with the EPR results, which showed a significant difference in terms of surface properties between the diatom and dinoflagellate species. Low-polar interactions of lipid aggregates with the plastic surface sites were mainly responsible for the cell-plastic adhesion by S. marinoi, which is exponentially growing on the plastic surface over the incubation time.


Asunto(s)
Diatomeas/metabolismo , Dinoflagelados/metabolismo , Microalgas/crecimiento & desarrollo , Fitoplancton/metabolismo , Plásticos/metabolismo , Tereftalatos Polietilenos/metabolismo , Ecosistema , Espectroscopía de Resonancia por Spin del Electrón , Microalgas/metabolismo , Océanos y Mares , Agua de Mar/química , Residuos/análisis
14.
Biomolecules ; 9(10)2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31569790

RESUMEN

Dendrimers exhibit unique interactions with cell membranes, arising from their nanometric size and high surface area. To a great extent, these interactions define their biological activity and can be reported in situ by spin-labelling techniques. Schiff-base carbosilane ruthenium (II) metallodendrimers are promising antitumor agents with a mechanism of action yet to explore. In order to study their in situ interactions with model cell membranes occurring at a molecular level, namely cetyltrimethylammonium bromide micelles (CTAB) and lecithin liposomes (LEC), electron paramagnetic resonance (EPR) was selected. Both a spin probe, 4-(N,N-dimethyl-N-dodecyl)ammonium-2,2,6,6-tetramethylpiperidine-1-oxyl bromide (CAT12), able to enter the model membranes, and a spin label, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) covalently attached at newly synthesized heterofunctional dendrimers, were used to provide complementary information on the dendrimer-membrane interactions. The computer-aided EPR analysis demonstrated a good agreement between the results obtained for the spin probe and spin label experiments. Both points of view suggested the partial insertion of the dendrimer surface groups into the surfactant aggregates, mainly CTAB micelles, and the occurrence of both polar and hydrophobic interactions, while dendrimer-LEC interactions involved more polar interactions between surface groups. We found out that subtle changes in the dendrimer structure greatly modified their interacting abilities and, subsequently, their anticancer activity.


Asunto(s)
Membrana Celular/química , Dendrímeros/química , Compuestos Organometálicos/química , Rutenio/química , Silanos/química , Marcadores de Spin , Cetrimonio/química , Espectroscopía de Resonancia por Spin del Electrón , Interacciones Hidrofóbicas e Hidrofílicas , Lecitinas/química , Liposomas/química , Micelas , Modelos Moleculares , Propiedades de Superficie
15.
Nanoscale ; 11(28): 13330-13342, 2019 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-31271405

RESUMEN

Current cancer therapies present serious drawbacks including severe side-effects and development of drug resistance. Strategies based on nanosized metallodrugs combine the structural diversity and non-classical modes of action of metal complexes with the selectivity arising from the unique interaction of nanoparticles with biological membranes. A new family of water-soluble copper(ii) carbosilane metallodendrimers was synthesized and characterized as a nanotechnological alternative to current therapies. The interactions occurring over time between the dendrimers, at different generations (G0 to G2) and with different Cu(ii) counter-ions (nitrate vs. chloride), and cell-membrane models (cethyl-trimethylammonium bromide (CTAB) micelles and lecithin liposomes) were investigated using a computer-aided analysis of the electron paramagnetic resonance (EPR) spectra. The EPR analysis provided structural and dynamical information on the systems indicating that the increase in generation and the change of the Cu(ii) contra-ion - from nitrate to chloride - produce an increased relative amount and strength of interaction of the dendrimer with the model membranes. Interestingly, the stabilization effect produced a lower toxicity towards cancer cells. The cytotoxic effect of Cu(ii) metallodendrimers was verified by an in vitro screening in a selection of tumor cell lines, revealing the impact of multivalency on the effectivity and selectivity of the metallodrugs. As a proof-of-concept, first-generation dendrimer G1-Cu(ONO2)2 was selected for in-depth in vitro and in vivo antitumor evaluation towards resistant prostate cancer. The Cu(ii)-metallodendrimers produced a significant tumor size reduction with no signs of toxicity during the experiment, confirming their promising potential as anticancer metallodrugs.


Asunto(s)
Antineoplásicos , Membrana Celular , Cobre , Dendrímeros , Modelos Biológicos , Neoplasias Experimentales , Silanos , Animales , Membrana Celular/metabolismo , Membrana Celular/patología , Cobre/química , Cobre/farmacología , Citotoxinas/química , Citotoxinas/farmacología , Dendrímeros/química , Dendrímeros/farmacología , Humanos , Células MCF-7 , Masculino , Ratones , Ratones Desnudos , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Células PC-3 , Silanos/química , Silanos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Colloids Surf B Biointerfaces ; 180: 487-494, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31102853

RESUMEN

Microemulsions (MEs) have gained increasing interest as carriers of hydrophobic bioactives in the last decades. However, it is still difficult to control the uptake and the release of bioactives directly extracted from plants. In this study, modified ME nanodroplets (nano-sized self-assembled liquids, NSSLs) were employed as extraction medium of gossypol, a toxic component of cottonseed. Loading was performed using both pure gossypol, and gossypol obtained by extraction from cottonseed. We achieved two goals: i) remove gossypol from cottonseed to obtain cotton-oil free of gossypol; and ii) extract gossypol directly into a nano-delivery vehicle for biomedical purposes. Structural and dynamical information on the unloaded and gossypol-loaded NSSL systems were obtained by self-diffusion nuclear magnetic resonance, SD-NMR, and spin-probe electron paramagnetic resonance (EPR) studies. The results showed that NSSL formed fluid water-in-oil (W/O) nano domains at the lowest water contents; a more viscous bicontinuous structure at comparable oil and water contents, and, finally, oil-in-water (O/W, micellar-like) at the higher concentration of water. These micellar-like structures were more fluid at the external hydrated surface, as demonstrated by SD-NMR, while the lipidic region tested by EPR revealed an increasing packing. In all these structures, gossypol mainly localized in the lipophilic region close to the water interface. Overall, SD-NMR and EPR provided complementary information, helping to clarify the structural properties of NSSLs formed at different water contents and their ability to incorporate gossypol also directly from cottonseed-NSSL mixtures.


Asunto(s)
Emulsiones/química , Gossypium/química , Gosipol/aislamiento & purificación , Gosipol/farmacología , Microtecnología/métodos , Difusión , Espectroscopía de Resonancia por Spin del Electrón , Gosipol/química , Espectroscopía de Resonancia Magnética
17.
Langmuir ; 35(24): 7879-7886, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31120758

RESUMEN

Pharmaceutical applications of microemulsions (MEs) as drug delivery vehicles are recently gaining scientific and practical interests. Most MEs are able to solubilize bioactive molecules, but, at present, they cannot guarantee either controlled release of the drugs or significant advantage in the bioavailability of the bioactives. This study proposes to incorporate the modified ME structures, or nanodomains, into a natural polymeric film, to be used as a stable and capacious reservoir of drug-loaded nanodomains. These nanodomain-loaded films may release the nanodroplets along with the drug molecules in a slow and controlled way. Gellan gum, an anionic polysaccharide, was used in aqueous solution as the film former, and curcumin, hydrophobic polyphenol, served as the guest molecule in the loaded systems. Films were prepared by using empty and curcumin-loaded MEs. It is imperative to verify the persistence of the ME structure upon the dissolution of the film mimicking its behavior when in contact with a human physiological aqueous environment via reaching the cell membranes. For this purpose, the films were dissolved, and the reconstituted ME structure was compared with the ME structure before film formation. Characterization of these structures, before and after dissolution, was achieved using electron paramagnetic resonance (EPR) and self-diffusion nuclear magnetic resonance (SD-NMR) techniques. Specific spin probes were inserted in the system, and a computer-aided analysis of the EPR spectra was performed to provide information on nanodomain microstructure assemblies. In addition, the SD-NMR profile of each component was analyzed to extract information on the diffusivity of the ME components before film formation and after ME reconstitution. The EPR and SD-NMR results were in good agreement to each other. The most important finding was that, after film dissolution, the ME nanodomains were reversibly and spontaneously reformed. It was also found that the film did not perturb the ME-nanodomain structure embedded in it. The film remained transparent and the bioactive curcumin was easily solubilized into the ME-droplet/water interface even after film dissolution. The combined techniques confirmed that the film constituted by bioactive-loaded MEs can serve as novel drug delivery vehicles.

18.
J Chromatogr A ; 1591: 120-130, 2019 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-30660440

RESUMEN

Liquid Electron Ionization (LEI), is an innovative liquid chromatography-mass spectrometry (LC-MS) interface that converts liquid HPLC eluent to the gas-phase in a mass spectrometer equipped with an electron ionization (EI) source. LEI extends the electronic spectra libraries access to liquid chromatography, providing a powerful tool in the untargeted approacssh. Negligible matrix effects allow accurate quantitative information. The purpose of this research was to evaluate the main aspects concerning the interfacing process. These fundamental studies were necessary to understand the mechanism of LEI in details, and improve the interfacing process, especially regarding robustness and sensitivity. Hardware components were installed to prevent analytes precipitation, reduce thermal decomposition of sensitive compounds, and to stabilize the nano-flow delivery with different mobile-phase compositions. Particular attention was devoted to insulating the heated vaporization area from the LC part of the system. Experiments were performed to optimize the interface inner capillary dimensions, and other operative parameters, including temperature, gas and liquid flow rates. Test compounds of environmental interest were selected based on molecular weight, thermal stability, volatility, and polarity. Robustness was evaluated with a set of replicated injections and calibration experiments using a soil matrix as a test sample. MRM detection limits in the low-picogram range were obtained for five pesticides belonging to different classes in a soil sample. High-quality electron ionization mass spectra of a mixture of pesticides were also obtained.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Electrones , Espectrometría de Masas/métodos , Ácido Desoxicólico/análisis , Mesilato de Imatinib/análisis , Límite de Detección , Reproducibilidad de los Resultados , Relación Señal-Ruido , Espectrometría de Masa por Ionización de Electrospray
19.
ACS Nano ; 12(11): 11343-11354, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30387988

RESUMEN

Nitroxides occupy a privileged position among plausible metal-free magnetic resonance imaging (MRI) contrast agents (CAs) due to their inherently low-toxicity profiles; nevertheless, their translational development has been hindered by a lack of appropriate contrast sensitivity. Nanostructured materials with high nitroxide densities, where each individual nitroxide within a macromolecular construct contributes to the image contrast, could address this limitation, but the synthesis of such materials remains challenging. Here, we report a modular and scalable synthetic approach to nitroxide-based brush-arm star polymer (BASP) organic radical CAs (ORCAs) with high nitroxide loadings. The optimized ∼30 nm diameter "BASP-ORCA3" displays outstanding T2 sensitivity with a very high molecular transverse relaxivity ( r2 > 1000 mM-1 s-1). BASP-ORCA3 further exhibits excellent stability in vivo, no acute toxicity, and highly desirable pharmacokinetic and biodistribution profiles for longitudinal detection of tumors by MRI. When injected intravenously into mice bearing subcutaneous plasmacytomas, BASP-ORCA3 affords distinct in vivo visualization of tumors on translationally relevant time scales. Leveraging its high sensitivity, BASP-ORCA3 enables efficient mapping of tumor necrosis, which is an important biomarker to predict therapeutic outcomes. Moreover, BASP-ORCA3 allows for detection of millimetric tumor implants in a disseminated murine model of advanced-stage human ovarian cancer that possess genetic, histological, and vascular characteristics that are similar to those seen in patients. This work establishes BASP-ORCA3 as a promising metal-free spin contrast agent for MRI.


Asunto(s)
Imagen por Resonancia Magnética , Neoplasias Experimentales/diagnóstico por imagen , Óxidos de Nitrógeno/química , Imagen Óptica , Polímeros/química , Animales , Humanos , Ratones , Ratones Endogámicos BALB C , Estructura Molecular
20.
Colloids Surf B Biointerfaces ; 161: 620-627, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29156339

RESUMEN

The silicon transport and use inside cells are key processes for understanding how diatoms metabolize this element in the silica biogenic cycle in the ocean. A spin-probe electron paramagnetic resonance (EPR) study over time helped to investigate the interacting properties and the internalization mechanisms of silicic acid from different silicon sources into the cells. Diatom cells were grown in media containing biogenic amorphous substrates, such as diatomaceous earth and sponge spicules, and crystalline sodium metasilicate. It was found that the amorphous biogenic silicon slowed down the internalization process probably due to formation of colloidal particles at the cell surface after silicic acid condensation. Weaker interactions occurred with sponge spicules silicon source if compared to the other sources. The EPR results were explained by analyzing transcript level changes of silicon transporters (SITs) and silaffins (SILs) in synchronized Thalassiosira pseudonana cultures over time. The results indicated that the transport role of SITs is minor for silicic acid from both biogenic and crystalline substrates, and the role of SIT3 is linked to the transport of silicon inside the cells, mainly in the presence of sponge spicules. SIL3 transcripts were expressed in the presence of all silicon sources, while SIL1 transcripts only with sponge spicules. The data suggest that the transport of silicic acid from various silicon sources in diatoms is based on different physico-chemical interactions with the cell surface.


Asunto(s)
Coloides/química , Diatomeas/química , Ácido Silícico/química , Dióxido de Silicio/química , Silicio/química , Proteínas Algáceas/genética , Proteínas Algáceas/metabolismo , Coloides/metabolismo , Diatomeas/genética , Diatomeas/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Expresión Génica , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Péptidos/genética , Péptidos/metabolismo , Ácido Silícico/metabolismo , Silicio/metabolismo , Dióxido de Silicio/metabolismo , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...