Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antibiotics (Basel) ; 13(5)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38786149

RESUMEN

Chlamydial infections and diseases caused by filarial nematodes are global health concerns. However, treatment presents challenges due to treatment failures potentially caused by persisting Chlamydia and long regimens against filarial infections accompanied by low compliance. A new treatment strategy could be the targeting of the reduced peptidoglycan structures involved in cell division in the obligate intracellular bacteria Chlamydia and Wolbachia, the latter being obligate endosymbionts supporting filarial development, growth, and survival. Here, cell culture experiments with C. trachomatis and Wolbachia showed that the nucleoside antibiotics muraymycin and carbacaprazamycin interfere with bacterial cell division and induce enlarged, aberrant cells resembling the penicillin-induced persistence phenotype in Chlamydia. Enzymatic inhibition experiments with purified C. pneumoniae MraY revealed that muraymycin derivatives abolish the synthesis of the peptidoglycan precursor lipid I. Comparative in silico analyses of chlamydial and wolbachial MraY with the corresponding well-characterized enzyme in Aquifex aeolicus revealed a high degree of conservation, providing evidence for a similar mode of inhibition. Muraymycin D2 treatment eradicated persisting non-dividing C. trachomatis cells from an established penicillin-induced persistent infection. This finding indicates that nucleoside antibiotics may have additional properties that can break bacterial persistence.

2.
PLoS Pathog ; 19(2): e1011047, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36730465

RESUMEN

The obligate intracellular Chlamydiaceae do not need to resist osmotic challenges and thus lost their cell wall in the course of evolution. Nevertheless, these pathogens maintain a rudimentary peptidoglycan machinery for cell division. They build a transient peptidoglycan ring, which is remodeled during the process of cell division and degraded afterwards. Uncontrolled degradation of peptidoglycan poses risks to the chlamydial cell, as essential building blocks might get lost or trigger host immune response upon release into the host cell. Here, we provide evidence that a primordial enzyme class prevents energy intensive de novo synthesis and uncontrolled release of immunogenic peptidoglycan subunits in Chlamydia trachomatis. Our data indicate that the homolog of a Bacillus NlpC/P60 protein is widely conserved among Chlamydiales. We show that the enzyme is tailored to hydrolyze peptidoglycan-derived peptides, does not interfere with peptidoglycan precursor biosynthesis, and is targeted by cysteine protease inhibitors in vitro and in cell culture. The peptidase plays a key role in the underexplored process of chlamydial peptidoglycan recycling. Our study suggests that chlamydiae orchestrate a closed-loop system of peptidoglycan ring biosynthesis, remodeling, and recycling to support cell division and maintain long-term residence inside the host. Operating at the intersection of energy recovery, cell division and immune evasion, the peptidoglycan recycling NlpC/P60 peptidase could be a promising target for the development of drugs that combine features of classical antibiotics and anti-virulence drugs.


Asunto(s)
Chlamydia trachomatis , Peptidoglicano , Chlamydia trachomatis/metabolismo , Peptidoglicano/metabolismo , Evasión Inmune , Proteínas Bacterianas/metabolismo , División Celular , Pared Celular/metabolismo , Péptido Hidrolasas/metabolismo
3.
Front Plant Sci ; 13: 955776, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35968103

RESUMEN

The Gram-negative plant-pathogenic bacterium Xanthomonas euvesicatoria is the causal agent of bacterial spot disease in pepper and tomato plants. Pathogenicity of X. euvesicatoria depends on a type III secretion (T3S) system which translocates effector proteins into plant cells and is associated with an extracellular pilus and a translocon in the plant plasma membrane. Effector protein translocation is activated by the cytoplasmic T3S chaperone HpaB which presumably targets effectors to the T3S system. We previously reported that HpaB is controlled by the translocated regulator HpaA which binds to and inactivates HpaB during the assembly of the T3S system. In the present study, we show that translocation of HpaA depends on the T3S substrate specificity switch protein HpaC and likely occurs after pilus and translocon assembly. Translocation of HpaA requires the presence of a translocation motif (TrM) in the N-terminal region. The TrM consists of an arginine-and proline-rich amino acid sequence and is also essential for the in vivo function of HpaA. Mutation of the TrM allowed the translocation of HpaA in hpaB mutant strains but not in the wild-type strain, suggesting that the recognition of the TrM depends on HpaB. Strikingly, the contribution of HpaB to the TrM-dependent translocation of HpaA was independent of the presence of the C-terminal HpaB-binding site in HpaA. We propose that HpaB generates a recognition site for the TrM at the T3S system and thus restricts the access to the secretion channel to effector proteins. Possible docking sites for HpaA at the T3S system were identified by in vivo and in vitro interaction studies and include the ATPase HrcN and components of the predicted cytoplasmic sorting platform of the T3S system. Notably, the TrM interfered with the efficient interaction of HpaA with several T3S system components, suggesting that it prevents premature binding of HpaA. Taken together, our data highlight a yet unknown contribution of the TrM and HpaB to substrate recognition and suggest that the TrM increases the binding specificity between HpaA and T3S system components.

4.
Front Microbiol ; 12: 752733, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721356

RESUMEN

Pathogenicity of the Gram-negative bacterium Xanthomonas campestris pv. vesicatoria depends on a type III secretion (T3S) system which translocates effector proteins into plant cells. T3S systems are conserved in plant- and animal-pathogenic bacteria and consist of at least nine structural core components, which are designated Sct (secretion and cellular translocation) in animal-pathogenic bacteria. Sct proteins are involved in the assembly of the membrane-spanning secretion apparatus which is associated with an extracellular needle structure and a cytoplasmic sorting platform. Components of the sorting platform include the ATPase SctN, its regulator SctL, and pod-like structures at the periphery of the sorting platform consisting of SctQ proteins. Members of the SctQ family form a complex with the C-terminal protein domain, SctQC, which is translated as separate protein and likely acts either as a structural component of the sorting platform or as a chaperone for SctQ. The sorting platform has been intensively studied in animal-pathogenic bacteria but has not yet been visualized in plant pathogens. We previously showed that the SctQ homolog HrcQ from X. campestris pv. vesicatoria assembles into complexes which associate with the T3S system and interact with components of the ATPase complex. Here, we report the presence of an internal alternative translation start site in hrcQ leading to the separate synthesis of the C-terminal protein region (HrcQC). The analysis of genomic hrcQ mutants showed that HrcQC is essential for pathogenicity and T3S. Increased expression levels of hrcQ or the T3S genes, however, compensated the lack of HrcQC. Interaction studies and protein analyses suggest that HrcQC forms a complex with HrcQ and promotes HrcQ stability. Furthermore, HrcQC colocalizes with HrcQ as was shown by fluorescence microscopy, suggesting that it is part of the predicted cytoplasmic sorting platform. In agreement with this finding, HrcQC interacts with the inner membrane ring protein HrcD and the SctK-like linker protein HrpB4 which contributes to the docking of the HrcQ complex to the membrane-spanning T3S apparatus. Taken together, our data suggest that HrcQC acts as a chaperone for HrcQ and as a structural component of the predicted sorting platform.

5.
Cell Microbiol ; 23(6): e13327, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33733571

RESUMEN

The Gram-negative bacterium Xanthomonas campestris pv. vesicatoria is the causal agent of bacterial spot disease on pepper and tomato plants. Pathogenicity of X. campestris pv. vesicatoria depends on a type III secretion (T3S) system which translocates bacterial effector proteins into plant cells. At least nine membrane-associated and cytoplasmic components of the secretion apparatus are homologous to corresponding Sct (secretion and cellular translocation) proteins from animal pathogens, suggesting a similar structural organisation of T3S systems in different bacterial species. T3S in X. campestris pv. vesicatoria also depends on non-conserved proteins with yet unknown function including the essential pathogenicity factor HrpB4. Here, we show that HrpB4 localises to the cytoplasm and the bacterial membranes and interacts with the cytoplasmic domain of the inner membrane (IM) ring component HrcD and the cytoplasmic HrcQ protein. The analysis of HrpB4 deletion derivatives revealed that deletion of the N- or C-terminal protein region affects the interaction of HrpB4 with HrcQ and HrcD as well as its contribution to pathogenicity. HrcQ is a component of the predicted sorting platform, which was identified in animal pathogens as a dynamic heterooligomeric protein complex and associates with the IM ring via SctK proteins. HrcQ complex formation was previously shown by fluorescent microscopy analysis and depends on the presence of the T3S system. In the present study, we provide experimental evidence that the absence of HrpB4 severely affects the docking of HrcQ complexes to the T3S system but does not significantly interfere with HrcQ complex formation in the bacterial cytoplasm. Taken together, our data suggest that HrpB4 links the predicted cytoplasmic sorting platform to the IM rings of the T3S system.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Sistemas de Secreción Tipo III/metabolismo , Xanthomonas campestris/genética , Xanthomonas campestris/metabolismo , Citoplasma/metabolismo , Unión Proteica , Transporte de Proteínas , Sistemas de Secreción Tipo III/genética , Xanthomonas campestris/patogenicidad
6.
Cell Microbiol ; 22(5): e13160, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31913558

RESUMEN

The Gram-negative bacterium Xanthomonas campestris pv. vesicatoria translocates effector proteins via a type III secretion system (T3SS) into eukaryotic cells. The T3SS spans both bacterial membranes and consists of more than 20 proteins, 9 of which are conserved in plant and animal pathogens and constitute the core subunits of the secretion apparatus. T3S in X. campestris pv. vesicatoria also depends on nonconserved proteins with yet unknown function including HrpB7, which contains predicted N- and C-terminal coiled-coil regions. In the present study, we provide experimental evidence that HrpB7 forms stable oligomeric complexes. Interaction and localisation studies suggest that HrpB7 interacts with inner membrane and predicted cytoplasmic (C) ring components of the T3SS but is dispensable for the assembly of the C ring. Additional interaction partners of HrpB7 include the cytoplasmic adenosinetriphosphatase HrcN and the T3S chaperone HpaB. The interaction of HrpB7 with T3SS components as well as complex formation by HrpB7 depends on the presence of leucine heptad motifs, which are part of the predicted N- and C-terminal coiled-coil structures. Our data suggest that HrpB7 forms multimeric complexes that associate with the T3SS and might serve as a docking site for the general T3S chaperone HpaB.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Xanthomonas campestris/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Chaperonas Moleculares/metabolismo , Mutación , Eliminación de Secuencia , Sistemas de Secreción Tipo III/genética , Xanthomonas campestris/genética
7.
mBio ; 10(1)2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30723128

RESUMEN

Gram-negative bacteria have a tripartite cell envelope with the cytoplasmic membrane (CM), a stress-bearing peptidoglycan (PG) layer, and the asymmetric outer membrane (OM) containing lipopolysaccharide (LPS) in the outer leaflet. Cells must tightly coordinate the growth of their complex envelope to maintain cellular integrity and OM permeability barrier function. The biogenesis of PG and LPS relies on specialized macromolecular complexes that span the entire envelope. In this work, we show that Escherichia coli cells are capable of avoiding lysis when the transport of LPS to the OM is compromised, by utilizing LD-transpeptidases (LDTs) to generate 3-3 cross-links in the PG. This PG remodeling program relies mainly on the activities of the stress response LDT, LdtD, together with the major PG synthase PBP1B, its cognate activator LpoB, and the carboxypeptidase PBP6a. Our data support a model according to which these proteins cooperate to strengthen the PG in response to defective OM synthesis.IMPORTANCE In Gram-negative bacteria, the outer membrane protects the cell against many toxic molecules, and the peptidoglycan layer provides protection against osmotic challenges, allowing bacterial cells to survive in changing environments. Maintaining cell envelope integrity is therefore a question of life or death for a bacterial cell. Here we show that Escherichia coli cells activate the LD-transpeptidase LdtD to introduce 3-3 cross-links in the peptidoglycan layer when the integrity of the outer membrane is compromised, and this response is required to avoid cell lysis. This peptidoglycan remodeling program is a strategy to increase the overall robustness of the bacterial cell envelope in response to defects in the outer membrane.


Asunto(s)
Membrana Celular/metabolismo , Pared Celular/metabolismo , Escherichia coli/fisiología , Viabilidad Microbiana , Peptidoglicano/metabolismo , Bacteriólisis , Transporte Biológico , Proteínas de Escherichia coli/metabolismo , Lipopolisacáridos/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano Glicosiltransferasa/metabolismo , Peptidil Transferasas/metabolismo , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo
8.
ACS Synth Biol ; 8(3): 532-547, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30694661

RESUMEN

Type III secretion (T3S) systems are essential pathogenicity factors of most Gram-negative bacteria and translocate effector proteins into plant or animal cells. T3S systems can, therefore, be used as tools for protein delivery into eukaryotic cells, for instance after transfer of the T3S gene cluster into nonpathogenic recipient strains. Here, we report the modular cloning of the T3S gene cluster from the plant-pathogenic bacterium Xanthomonas euvesicatoria. The resulting multigene construct encoded a functional T3S system and delivered effector proteins into plant cells. The modular design of the T3S gene cluster allowed the efficient replacement and rearrangement of single genes or operons and the insertion of reporter genes for functional studies. In the present study, we used the modular T3S system to analyze the assembly of a fluorescent fusion of the predicted cytoplasmic ring protein HrcQ. Our studies demonstrate the use of the modular T3S gene cluster for functional analyses and mutant approaches in X. euvesicatoria. A potential application of the modular T3S system as protein delivery tool is discussed.


Asunto(s)
Clonación Molecular/métodos , Familia de Multigenes , Plantas/microbiología , Sistemas de Secreción Tipo III/genética , Xanthomonas/genética , Proteínas Bacterianas/genética , Retroalimentación Fisiológica , Regulación Bacteriana de la Expresión Génica , Genes Reporteros , Vectores Genéticos , Proteínas Fluorescentes Verdes/metabolismo , Operón/genética , Fenotipo , Biosíntesis de Proteínas/genética , Transporte de Proteínas
9.
Front Microbiol ; 9: 2101, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30233559

RESUMEN

The enzymes responsible for the synthesis of the peptidoglycan (PG) layer constitute a fundamental target for a large group of antibiotics. The family of ß-lactam antibiotics inhibits the DD-transpeptidase (TPase) activity of the penicillin binding proteins (PBPs), whereas its subgroup of carbapenems can also block the TPase activity of the LD-TPases. D-Ala fluorescent probes, such as NADA, are incorporated into the PG presumably by TPases in Escherichia coli and can be used to study conditions that are required for their function. Of all LD-TPases of E. coli, only LdtD was able to incorporate NADA during exponential growth. Overproduction of LdtD caused NADA to be especially inserted at mid cell in the presence of LpoB-activated PBP1b and the class C PBP5. Using the NADA assay, we could confirm that LpoB activates PBP1b at mid cell and that CpoB regulates the activity of PBP1b in vivo. Overproduction of LdtD was able to partly compensate for the inhibition of the cell division specific class B PBP3 by aztreonam. We showed that class A PBP1c and the class C PBP6b cooperated with LdtD for NADA incorporation when PBP1b and PBP5 were absent, respectively. Besides, we proved that LdtD is active at pH 7.0 whereas LdtE and LdtF are more active in cells growing at pH 5.0 and they seem to cooperate synergistically. The NADA assay proved to be a useful tool for the analysis of the in vivo activities of the proteins involved in PG synthesis and our results provide additional evidence that the LD-TPases are involved in PG maintenance at different conditions.

10.
Cell Surf ; 2: 1-13, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30046664

RESUMEN

Peptidoglycan (PG) is an essential component of the bacterial cell wall that maintains the shape and integrity of the cell. The PG precursor lipid II is assembled at the inner leaflet of the cytoplasmic membrane, translocated to the periplasmic side, and polymerized to glycan chains by membrane anchored PG synthases, such as the class A Penicillin-binding proteins (PBPs). Polymerization of PG releases the diphosphate form of the carrier lipid, undecaprenyl pyrophosphate (C55-PP), which is converted to the monophosphate form by membrane-embedded pyrophosphatases, generating C55-P for a new round of PG precursor synthesis. Here we report that deletion of the C55-PP pyrophosphatase gene pgpB in E. coli increases the susceptibility to cefsulodin, a ß-lactam specific for PBP1A, indicating that the cellular function of PBP1B is impaired in the absence of PgpB. Purified PBP1B interacted with PgpB and another C55-PP pyrophosphatase, BacA and both, PgpB and BacA stimulated the glycosyltransferase activity of PBP1B. C55-PP was found to be a potent inhibitor of PBP1B. Our data suggest that the stimulation of PBP1B by PgpB is due to the faster removal and processing of C55-PP, and that PBP1B interacts with C55-PP phosphatases during PG synthesis to couple PG polymerization with the recycling of the carrier lipid and prevent product inhibition by C55-PP.

11.
Bio Protoc ; 8(6): e2761, 2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29651453

RESUMEN

Peptidoglycan encases the bacterial cytoplasmic membrane to protect the cell from lysis due to the turgor. The final steps of peptidoglycan synthesis require a membrane-anchored substrate called lipid II, in which the peptidoglycan subunit is linked to the carrier lipid undecaprenol via a pyrophosphate moiety. Lipid II is the target of glycopeptide antibiotics and several antimicrobial peptides, and is degraded by 'attacking' enzymes involved in bacterial competition to induce lysis. Here we describe two protocols using thin-layer chromatography (TLC) and high pressure liquid chromatography (HPLC), respectively, to assay the digestion of lipid II by phosphatases such as Colicin M or the LXG toxin protein TelC from Streptococcus intermedius. The TLC method can also monitor the digestion of undecaprenyl (pyro)phosphate, whereas the HPLC method allows to separate the di-, mono- or unphosphorylated disaccharide pentapeptide products of lipid II.

12.
Front Microbiol ; 9: 3223, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30713527

RESUMEN

Peptidoglycan (PG) is an essential component of the cell envelope, maintaining bacterial cell shape and protecting it from bursting due to turgor pressure. The monoderm bacterium Staphylococcus aureus has a highly cross-linked PG, with ~90% of peptide stems participating in DD-cross-links and up to 15 peptide stems connected with each other. These cross-links are formed in transpeptidation reactions catalyzed by penicillin-binding proteins (PBPs) of classes A and B. Most S. aureus strains have three housekeeping PBPs with this function (PBP1, PBP2, and PBP3) but MRSA strains have acquired a third class B PBP, PBP2a, which is encoded by the mecA gene and required for the expression of high-level resistance to ß-lactams. Another housekeeping PBP of S. aureus is PBP4, which belongs to the class C PBPs, and hence would be expected to have PG hydrolase (DD-carboxypeptidase or DD-endopeptidase) activity. However, previous works showed that, unexpectedly, PBP4 has transpeptidase activity that significantly contributes to both the high level of cross-linking in the PG of S. aureus and to the low level of ß-lactam resistance in the absence of PBP2a. To gain insights into this unusual activity of PBP4, we studied by NMR spectroscopy its interaction in vitro with different substrates, including intact peptidoglycan, synthetic peptide stems, muropeptides, and long glycan chains with uncross-linked peptide stems. PBP4 showed no affinity for the complex, intact peptidoglycan or the smallest isolated peptide stems. Transpeptidase activity of PBP4 was verified with the disaccharide peptide subunits (muropeptides) in vitro, producing cyclic dimer and multimer products; these assays also showed a designed PBP4(S75C) nucleophile mutant to be inactive. Using this inactive but structurally highly similar variant, liquid-state NMR identified two interaction surfaces in close proximity to the central nucleophile position that can accommodate the potential donor and acceptor stems for the transpeptidation reaction. A PBP4:muropeptide model structure was built from these experimental restraints, which provides new mechanistic insights into mecA independent resistance to ß-lactams in S. aureus.

13.
Mol Microbiol ; 107(2): 142-163, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29178391

RESUMEN

Peptidoglycan is the predominant stress-bearing structure in the cell envelope of most bacteria, and also a potent stimulator of the eukaryotic immune system. Obligate intracellular bacteria replicate exclusively within the interior of living cells, an osmotically protected niche. Under these conditions peptidoglycan is not necessarily needed to maintain the integrity of the bacterial cell. Moreover, the presence of peptidoglycan puts bacteria at risk of detection and destruction by host peptidoglycan recognition factors and downstream effectors. This has resulted in a selective pressure and opportunity to reduce the levels of peptidoglycan. In this review we have analysed the occurrence of genes involved in peptidoglycan metabolism across the major obligate intracellular bacterial species. From this comparative analysis, we have identified a group of predicted 'peptidoglycan-intermediate' organisms that includes the Chlamydiae, Orientia tsutsugamushi, Wolbachia and Anaplasma marginale. This grouping is likely to reflect biological differences in their infection cycle compared with peptidoglycan-negative obligate intracellular bacteria such as Ehrlichia and Anaplasma phagocytophilum, as well as obligate intracellular bacteria with classical peptidoglycan such as Coxiella, Buchnera and members of the Rickettsia genus. The signature gene set of the peptidoglycan-intermediate group reveals insights into minimal enzymatic requirements for building a peptidoglycan-like sacculus and/or division septum.


Asunto(s)
Bacterias , Interacciones Microbiota-Huesped , Espacio Intracelular/microbiología , Peptidoglicano/genética , Peptidoglicano/metabolismo , Anaplasma marginale/clasificación , Anaplasma marginale/genética , Anaplasma marginale/inmunología , Anaplasma marginale/metabolismo , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/inmunología , Bacterias/metabolismo , Pared Celular/metabolismo , Chlamydia/clasificación , Chlamydia/genética , Chlamydia/inmunología , Chlamydia/metabolismo , Citoplasma/metabolismo , Genoma Bacteriano/genética , Humanos , Inmunidad Innata/inmunología , Orientia tsutsugamushi/clasificación , Orientia tsutsugamushi/genética , Orientia tsutsugamushi/inmunología , Orientia tsutsugamushi/metabolismo , Peptidoglicano/química , Filogenia , Wolbachia/clasificación , Wolbachia/genética , Wolbachia/inmunología , Wolbachia/metabolismo
14.
Artículo en Inglés | MEDLINE | ID: mdl-28824885

RESUMEN

Wolbachia endobacteria are obligate intracellular bacteria with a highly reduced genome infecting many arthropod and filarial species, in which they manipulate arthropod reproduction to increase their transmission and are essential for nematode development and survival. The Wolbachia genome encodes all enzymes required for the synthesis of the cell wall building block lipid II, although a peptidoglycan-like structure has not been detected. Despite the ability to synthesize lipid II, Wolbachia from arthropods and nematodes have only a subset of genes encoding enzymes involved in the periplasmic processing of lipid II and peptidoglycan recycling, with arthropods having two more than nematodes. We functionally analyzed the activity of the putative cell wall hydrolase AmiD from the Wolbachia endosymbiont of Drosophila melanogaster, an enzyme not encoded by the nematode endobacteria. Wolbachia AmiD has Zn2+-dependent amidase activity and cleaves intact peptidoglycan, monomeric lipid II and anhydromuropeptides, substrates that are generated during bacterial growth. AmiD may have been maintained in arthropod Wolbachia to avoid host immune recognition by degrading cell wall fragments in the periplasm. This is the first description of a wolbachial lipid II processing enzyme putatively expressed in the periplasm.


Asunto(s)
Amidohidrolasas/metabolismo , Drosophila melanogaster/microbiología , Peptidoglicano/biosíntesis , Wolbachia/enzimología , Amidohidrolasas/genética , Amidohidrolasas/inmunología , Secuencia de Aminoácidos , Animales , Artrópodos/microbiología , Pared Celular/metabolismo , Vectores Genéticos , Mutagénesis Sitio-Dirigida , Nematodos/microbiología , Peptidoglicano/inmunología , Análisis de Secuencia de Proteína , Simbiosis , Uridina Difosfato Ácido N-Acetilmurámico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurámico/metabolismo , Wolbachia/genética
15.
J Biol Chem ; 291(5): 2535-46, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26620564

RESUMEN

Screening of new compounds directed against key protein targets must continually keep pace with emerging antibiotic resistances. Although periplasmic enzymes of bacterial cell wall biosynthesis have been among the first drug targets, compounds directed against the membrane-integrated catalysts are hardly available. A promising future target is the integral membrane protein MraY catalyzing the first membrane associated step within the cytoplasmic pathway of bacterial peptidoglycan biosynthesis. However, the expression of most MraY homologues in cellular expression systems is challenging and limits biochemical analysis. We report the efficient production of MraY homologues from various human pathogens by synthetic cell-free expression approaches and their subsequent characterization. MraY homologues originating from Bordetella pertussis, Helicobacter pylori, Chlamydia pneumoniae, Borrelia burgdorferi, and Escherichia coli as well as Bacillus subtilis were co-translationally solubilized using either detergent micelles or preformed nanodiscs assembled with defined membranes. All MraY enzymes originating from Gram-negative bacteria were sensitive to detergents and required nanodiscs containing negatively charged lipids for obtaining a stable and functionally folded conformation. In contrast, the Gram-positive B. subtilis MraY not only tolerates detergent but is also less specific for its lipid environment. The MraY·nanodisc complexes were able to reconstitute a complete in vitro lipid I and lipid II forming pipeline in combination with the cell-free expressed soluble enzymes MurA-F and with the membrane-associated protein MurG. As a proof of principle for future screening platforms, we demonstrate the inhibition of the in vitro lipid II biosynthesis with the specific inhibitors fosfomycin, feglymycin, and tunicamycin.


Asunto(s)
Proteínas Bacterianas/química , Monosacáridos/biosíntesis , Oligopéptidos/biosíntesis , Transferasas/química , Uridina Difosfato Ácido N-Acetilmurámico/análogos & derivados , Bacillus subtilis/enzimología , Vías Biosintéticas , Bordetella pertussis/enzimología , Borrelia burgdorferi/enzimología , Pared Celular/química , Sistema Libre de Células , Chlamydophila pneumoniae/enzimología , Citoplasma/química , ADN/química , Detergentes/química , Escherichia coli/enzimología , Fosfomicina/química , Helicobacter pylori/enzimología , Micelas , Péptidos/química , Peptidoglicano/química , Proteínas/química , Proteínas Recombinantes/química , Transferasas (Grupos de Otros Fosfatos Sustitutos) , Tunicamicina/química , Uridina Difosfato Ácido N-Acetilmurámico/biosíntesis
16.
PLoS One ; 10(4): e0122110, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25849314

RESUMEN

Heterologous overexpression of foreign proteins in Escherichia coli often leads to insoluble aggregates of misfolded inactive proteins, so-called inclusion bodies. To solve this problem use of chaperones or in vitro refolding procedures are the means of choice. These methods are time consuming and cost intensive, due to additional purification steps to get rid of the chaperons or the process of refolding itself. We describe an easy to use lab-scale method to avoid formation of inclusion bodies. The method systematically combines use of co-solvents, usually applied for in vitro stabilization of biologicals in biopharmaceutical formulation, and periplasmic expression and can be completed in one week using standard equipment in any life science laboratory. Demonstrating the unique power of our method, we overproduced and purified for the first time an active chlamydial penicillin-binding protein, demonstrated its function as penicillin sensitive DD-carboxypeptidase and took a major leap towards understanding the "chlamydial anomaly."


Asunto(s)
Proteínas Bacterianas/metabolismo , Chlamydia/metabolismo , Escherichia coli/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Solventes/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Betaína/química , Dominio Catalítico , Clonación Molecular , Mutagénesis Sitio-Dirigida , Proteínas de Unión a las Penicilinas/química , Proteínas de Unión a las Penicilinas/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
17.
Biomed Tech (Berl) ; 60(3): 215-23, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25719280

RESUMEN

Several studies focusing on bone tissue engineering demonstrated that given microstructuring of an implant surface has a strong effect on its interaction with cells, and their adhesion and differentiation. In the present study, geometrically structured titanium alloy surfaces are shown to be able to guide cell adhesion during differentiation in vitro. For this reason, using an electron beam texturing technique, TiAl6V4 surfaces were selectively targeted in the micrometer range. The effect of such textured titanium alloy surfaces on cell adhesion during osteogenic differentiation was analyzed for human mesenchymal stem cells (MSC), the natural precursor cells of bone tissue. Cytotoxicity, cell viability and differentiation were analyzed. Immunofluorescence stainings demonstrated that in contrast to MSC in an expansion medium, MSC in an osteogenic induction medium produce adhesion proteins such as ß3-integrins and thereby connect in an oriented way to the generated microstructures on titanium alloy surfaces. These results are of relevance for developing tailored titanium alloy implant surfaces which exhibit an improved cell response.


Asunto(s)
Aleaciones/química , Adhesión Celular/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Células Madre Mesenquimatosas/citología , Osteogénesis/fisiología , Titanio/química , Adhesión Celular/fisiología , Diferenciación Celular , Electrones , Humanos , Propiedades de Superficie
18.
Nat Commun ; 5: 4201, 2014 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-24953137

RESUMEN

Intracellular Chlamydiaceae do not need to resist osmotic challenges and a functional cell wall was not detected in these pathogens. Nevertheless, a recent study revealed evidence for circular peptidoglycan-like structures in Chlamydiaceae and penicillin inhibits cytokinesis, a phenomenon known as the chlamydial anomaly. Here, by characterizing a cell wall precursor-processing enzyme, we provide insights into the mechanisms underlying this mystery. We show that AmiA from Chlamydia pneumoniae separates daughter cells in an Escherichia coli amidase mutant. Contrary to homologues from free-living bacteria, chlamydial AmiA uses lipid II as a substrate and has dual activity, acting as an amidase and a carboxypeptidase. The latter function is penicillin sensitive and assigned to a penicillin-binding protein motif. Consistent with the lack of a regulatory domain in AmiA, chlamydial CPn0902, annotated as NlpD, is a carboxypeptidase, rather than an amidase activator, which is the case for E. coli NlpD. Functional conservation of AmiA implicates a role in cytokinesis and host response modulation.


Asunto(s)
Amidohidrolasas/metabolismo , Proteínas Bacterianas/metabolismo , Chlamydophila pneumoniae/enzimología , Penicilinas/farmacología , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/química , Amidohidrolasas/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Carboxipeptidasas/química , Carboxipeptidasas/genética , Carboxipeptidasas/metabolismo , Pared Celular/enzimología , Pared Celular/genética , Pared Celular/metabolismo , Chlamydophila pneumoniae/citología , Chlamydophila pneumoniae/efectos de los fármacos , Chlamydophila pneumoniae/genética , Citocinesis , Datos de Secuencia Molecular , Alineación de Secuencia
19.
Artículo en Inglés | MEDLINE | ID: mdl-24616885

RESUMEN

For intracellular Chlamydiaceae, there is no need to withstand osmotic challenges, and a functional cell wall has not been detected in these pathogens so far. Nevertheless, penicillin inhibits cell division in Chlamydiaceae resulting in enlarged aberrant bodies, a phenomenon known as chlamydial anomaly. D-alanine is a unique and essential component in the biosynthesis of bacterial cell walls. In free-living bacteria like Escherichia coli, penicillin-binding proteins such as monofunctional transpeptidases PBP2 and PBP3, the putative targets of penicillin in Chlamydiaceae, cross-link adjacent peptidoglycan strands via meso-diaminopimelic acid and D-Ala-D-Ala moieties of pentapeptide side chains. In the absence of genes coding for alanine racemase Alr and DadX homologs, the source of D-Ala and thus the presence of substrates for PBP2 and PBP3 activity in Chlamydiaceae has puzzled researchers for years. Interestingly, Chlamydiaceae genomes encode GlyA, a serine hydroxymethyltransferase that has been shown to exhibit slow racemization of D- and L-alanine as a side reaction in E. coli. We show that GlyA from Chlamydia pneumoniae can serve as a source of D-Ala. GlyA partially reversed the D-Ala auxotrophic phenotype of an E. coli racemase double mutant. Moreover, purified chlamydial GlyA had racemase activity on L-Ala in vitro and was inhibited by D-cycloserine, identifying GlyA, besides D-Ala ligase MurC/Ddl, as an additional target of this competitive inhibitor in Chlamydiaceae. Proof of D-Ala biosynthesis in Chlamydiaceae helps to clarify the structure of cell wall precursor lipid II and the role of chlamydial penicillin-binding proteins in the development of non-dividing aberrant chlamydial bodies and persistence in the presence of penicillin.


Asunto(s)
Alanina Racemasa/metabolismo , Alanina/metabolismo , Chlamydophila pneumoniae/enzimología , Glicina Hidroximetiltransferasa/metabolismo , Alanina Racemasa/genética , Chlamydophila pneumoniae/genética , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
20.
PLoS One ; 6(10): e25129, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22022378

RESUMEN

In rod-shaped bacteria, the bacterial actin ortholog MreB is considered to organize the incorporation of cell wall precursors into the side-wall, whereas the tubulin homologue FtsZ is known to tether incorporation of cell wall building blocks at the developing septum. For intracellular bacteria, there is no need to compensate osmotic pressure by means of a cell wall, and peptidoglycan has not been reliably detected in Chlamydiaceae. Surprisingly, a nearly complete pathway for the biosynthesis of the cell wall building block lipid II has been found in the genomes of Chlamydiaceae. In a previous study, we discussed the hypothesis that conservation of lipid II biosynthesis in cell wall-lacking bacteria may reflect the intimate molecular linkage of cell wall biosynthesis and cell division and thus an essential role of the precursor in cell division. Here, we investigate why spherical-shaped chlamydiae harbor MreB which is almost exclusively found in elongated bacteria (i.e. rods, vibrios, spirilla) whereas they lack the otherwise essential division protein FtsZ. We demonstrate that chlamydial MreB polymerizes in vitro and that polymerization is not inhibited by the blocking agent A22. As observed for MreB from Bacillus subtilis, chlamydial MreB does not require ATP for polymerization but is capable of ATP hydrolysis in phosphate release assays. Co-pelleting and bacterial two-hybrid experiments indicate that MreB from Chlamydophila (Chlamydia) pneumoniae interacts with MurF, MraY and MurG, three key components in lipid II biosynthesis. In addition, MreB polymerization is improved in the presence of MurF. Our findings suggest that MreB is involved in tethering biosynthesis of lipid II and as such may be necessary for maintaining a functional divisome machinery in Chlamydiaceae.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chlamydophila pneumoniae/metabolismo , Proteínas del Citoesqueleto/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/farmacología , Chlamydophila pneumoniae/efectos de los fármacos , Hidrólisis/efectos de los fármacos , Modelos Biológicos , Proteínas Mutantes/metabolismo , Polimerizacion/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Tiourea/análogos & derivados , Tiourea/farmacología , Técnicas del Sistema de Dos Híbridos , Uridina Difosfato Ácido N-Acetilmurámico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurámico/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...