Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Harmful Algae ; 104: 102037, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-34023075

RESUMEN

The ADA clade of Nostocales cyanobacteria, a group that is prominent in current harmful algal bloom events, now includes over 40 genome sequences with the recent addition of sixteen novel sequenced genomes (Dreher et al., Harmful Algae, 2021). Fourteen genomes are complete (closed), enabling highly detailed assessments of gene content and genome architecture. ADA genomes contain 5 rRNA operons, genes expected to support a photoautotrophic and diazotrophic lifestyle, and a varied array of genes for the synthesis of bioactive secondary metabolites. Genes for the production of the taste-and-odor compound geosmin and the four major classes of cyanotoxins - anatoxin-a, cylindrospermopsin, microcystin and saxitoxin - are represented in members of the ADA clade. Notably, the gene array for the synthesis of cylindrospermopsin by Dolichospermum sp. DET69 was located on a plasmid, raising the possibility of facile horizontal transmission. However, genes supporting independent conjugative transfer of this plasmid are lacking. Further, analysis of genomic loci containing this and other cyanotoxin gene arrays shows evidence that these arrays have long-term stability and do not appear to be genomic islands easily capable of horizontal transmission to other cells. There is considerable diversity in the gene complements of individual ADA genomes, including the variable presence of physiologically important genes: genomes in three species-level subclades lack the gas vesicle genes that facilitate a planktonic lifestyle, and, surprisingly, the genome of Cuspidothrix issatschenkoi CHARLIE-1, a reported diazotroph, lacks the genes for nitrogen fixation. Notably, phylogenetically related genomes possess limited synteny, indicating a prominent role for chromosome rearrangements during ADA strain evolution. The genomes contain abundant insertion sequences and repetitive transposase genes, which could be the main drivers of genome rearrangement through active transposition and homologous recombination. No prophages were found, and no evidence of viral infection was observed in the bloom population samples from which the genomes discussed here were derived. Phages thus seem to have a limited influence on ADA evolution.


Asunto(s)
Toxinas Bacterianas , Cianobacterias , Toxinas Bacterianas/genética , Genómica , Floraciones de Algas Nocivas
2.
Harmful Algae ; 93: 101767, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32307065

RESUMEN

Reports of anatoxins poisoning of wildlife and domestic animals by toxigenic cyanobacteria in streams and rivers are increasing globally. Little is known about the taxonomy, morphology and genomics of anatoxins producing species, limiting our knowledge about their environmental preferences. We isolated three benthic non-heterocystous filamentous cyanobacterial strains from the Russian River in Northern California (USA), which produce anatoxin-a and dihydroanatoxin-a. Both 16S rRNA and protein sequence phylogenetic analyses showed that the strains represent a distinct new member of the cyanobacterial genus Microcoleus (Oscillatoriales). A novel species, Microcoleus anatoxicus is described and accompanied with light microscope photomicrographs, toxin profiles and the complete anatoxin-a gene cassette with the first description of the anaK gene in Microcoleus.


Asunto(s)
Toxinas Bacterianas , Cianobacterias , Animales , Toxinas Bacterianas/genética , California , Cianobacterias/genética , Filogenia , Prolina/análogos & derivados , ARN Ribosómico 16S/genética , Ríos , Federación de Rusia
3.
Harmful Algae ; 77: 93-107, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30005805

RESUMEN

In order to better understand the relationships among current Nostocales cyanobacterial blooms, eight genomes were sequenced from cultured isolates or from environmental metagenomes of recent planktonic Nostocales blooms. Phylogenomic analysis of publicly available sequences placed the new genomes among a group of 15 genomes from four continents in a distinct ADA clade (Anabaena/Dolichospermum/Aphanizomenon) within the Nostocales. This clade contains four species-level groups, two of which include members with both Anabaena-like and Aphanizomenon flos-aquae-like morphology. The genomes contain many repetitive genetic elements and a sizable pangenome, in which ABC-type transporters are highly represented. Alongside common core genes for photosynthesis, the differentiation of N2-fixing heterocysts, and the uptake and incorporation of the major nutrients P, N and S, we identified several gene pathways in the pangenome that may contribute to niche partitioning. Genes for problematic secondary metabolites-cyanotoxins and taste-and-odor compounds-were sporadically present, as were other polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) gene clusters. By contrast, genes predicted to encode the ribosomally generated bacteriocin peptides were found in all genomes.


Asunto(s)
Cianobacterias/clasificación , Genoma Bacteriano , Proteínas Bacterianas/análisis , Cianobacterias/genética , Floraciones de Algas Nocivas , Filogenia
4.
Environ Sci Technol ; 52(10): 5519-5529, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29656639

RESUMEN

Anthropogenic nutrient overenrichment, coupled with rising temperatures, and an increasing frequency of extreme hydrologic events (storms and droughts) are accelerating eutrophication and promoting the expansion of harmful algal blooms (HABs) across the freshwater-to-marine continuum. All HABs-with a focus here on cyanobacterial blooms-pose serious consequences for water supplies, fisheries, recreational uses, tourism, and property values. As nutrient loads grow in watersheds, they begin to compound the effects of legacy stores. This has led to a paradigm shift in our understanding of how nutrients control eutrophication and blooms. Phosphorus (P) reductions have been traditionally prescribed exclusively for freshwater systems, while nitrogen (N) reductions were mainly stressed for brackish and coastal waters. However, because most systems are hydrologically interconnected, single nutrient (e.g., P only) reductions upstream may not necessarily reduce HAB impacts downstream. Reducing both N and P inputs is the only viable nutrient management solution for long-term control of HABs along the continuum. This article highlights where paired physical, chemical, or biological controls may improve beneficial uses in the short term, and offers management strategies that should be enacted across watershed scales to combat the global expansion of HABs across geographically broad freshwater-to-marine continua.


Asunto(s)
Cianobacterias , Floraciones de Algas Nocivas , Eutrofización , Agua Dulce , Nitrógeno , Fósforo
5.
Environ Microbiol ; 19(9): 3619-3637, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28730710

RESUMEN

Harmful blooms of the cyanobacterium Microcystis sp. have become increasingly pervasive in the San Francisco Estuary Delta (USA) since the early 2000s and their rise has coincided with substantial decreases in several important fish species. Direct and indirect effects Microcystis blooms may have on the Delta food web were investigated. The Microcystis population was tracked for 2 years at six sites throughout the Delta using quantitative PCR. High-throughput amplicon sequencing and colony PCR sequencing revealed the presence of 10 different strains of Microcystis, including 6 different microcystin-producing strains. Shotgun metagenomic analysis identified a variety of Microcystis secondary metabolite pathways, including those for the biosynthesis of: aeruginosin, cyanopeptolin, microginin, microviridin and piricyclamide. A sizable reduction was observed in microbial community diversity during a large Microcystis bloom (H' = 0.61) relative to periods preceding (H' = 2.32) or following (H' = 3.71) the bloom. Physicochemical conditions of the water column were stable throughout the bloom period. The elevated abundance of a cyanomyophage with high similarity to previously sequenced isolates known to infect Microcystis sp. was implicated in the bloom's collapse. Network analysis was employed to elucidate synergistic and antagonistic relationships between Microcystis and other bacteria and indicated that only very few taxa were positively correlated with Microcystis.


Asunto(s)
Floraciones de Algas Nocivas , Microbiota , Microcystis/clasificación , Microcystis/aislamiento & purificación , Animales , Biodiversidad , ADN Bacteriano/genética , Ecología , Estuarios , Peces , Cadena Alimentaria , Microcistinas/biosíntesis , Microcystis/genética , Microcystis/virología , Reacción en Cadena en Tiempo Real de la Polimerasa , San Francisco , Microbiología del Agua
6.
Stand Genomic Sci ; 12: 9, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28127419

RESUMEN

Here we report three complete bacterial genome assemblies from a PacBio shotgun metagenome of a co-culture from Upper Klamath Lake, OR. Genome annotations and culture conditions indicate these bacteria are dependent on carbon and nitrogen fixation from the cyanobacterium Aphanizomenon flos-aquae, whose genome was assembled to draft-quality. Due to their taxonomic novelty relative to previously sequenced bacteria, we have temporarily designated these bacteria as incertae sedis Hyphomonadaceae strain UKL13-1 (3,501,508 bp and 56.12% GC), incertae sedis Betaproteobacterium strain UKL13-2 (3,387,087 bp and 54.98% GC), and incertae sedis Bacteroidetes strain UKL13-3 (3,236,529 bp and 37.33% GC). Each genome consists of a single circular chromosome with no identified plasmids. When compared with binned Illumina assemblies of the same three genomes, there was ~7% discrepancy in total genome length. Gaps where Illumina assemblies broke were often due to repetitive elements. Within these missing sequences were essential genes and genes associated with a variety of functional categories. Annotated gene content reveals that both Proteobacteria are aerobic anoxygenic phototrophs, with Betaproteobacterium UKL13-2 potentially capable of phototrophic oxidation of sulfur compounds. Both proteobacterial genomes contain transporters suggesting they are scavenging fixed nitrogen from A. flos-aquae in the form of ammonium. Bacteroidetes UKL13-3 has few completely annotated biosynthetic pathways, and has a comparatively higher proportion of unannotated genes. The genomes were detected in only a few other freshwater metagenomes, suggesting that these bacteria are not ubiquitous in freshwater systems. Our results indicate that long-read sequencing is a viable method for sequencing dominant members from low-diversity microbial communities, and should be considered for environmental metagenomics when conditions meet these requirements.

7.
Microb Biotechnol ; 9(5): 641-51, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27418325

RESUMEN

The cyanobacteria are a phylum of bacteria that have played a key role in shaping the Earth's biosphere due to their pioneering ability to perform oxygenic photosynthesis. Throughout their history, cyanobacteria have experienced major biogeochemical changes accompanying Earth's geochemical evolution over the past 2.5+ billion years, including periods of extreme climatic change, hydrologic, nutrient and radiation stress. Today, they remain remarkably successful, exploiting human nutrient over-enrichment as nuisance "blooms." Cyanobacteria produce an array of unique metabolites, the functions and biotic ramifications of which are the subject of diverse ecophysiological studies. These metabolites are relevant from organismal and ecosystem function perspectives because some can be toxic and fatal to diverse biota, including zooplankton and fish consumers of algal biomass, and high-level consumers of aquatic food sources and drinking water, including humans. Given the long history of environmental extremes and selection pressures that cyanobacteria have experienced, it is likely that that these toxins serve ecophysiological functions aimed at optimizing growth and fitness during periods of environmental stress. Here, we explore the molecular and ecophysiological mechanisms underlying cyanotoxin production, with emphasis on key environmental conditions potentially controlling toxin production. Based on this information, we offer potential management strategies for reducing cyanotoxin potentials in natural waters; for cyanotoxins with no clear drivers yet elucidated, we highlight the data gaps and research questions that are still lacking. We focus on the four major classes of toxins (anatoxins, cylindrospermopsins, microcystins and saxitoxins) that have thus far been identified as relevant from environmental health perspectives, but caution there may be other harmful metabolites waiting to be elucidated.


Asunto(s)
Toxinas Bacterianas/metabolismo , Cianobacterias/crecimiento & desarrollo , Cianobacterias/metabolismo , Microbiología del Agua , Agua/química , Ambiente , Purificación del Agua/métodos
8.
Appl Environ Microbiol ; 82(17): 5410-20, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27342564

RESUMEN

UNLABELLED: While commonplace in clinical settings, DNA-based assays for identification or enumeration of drinking water pathogens and other biological contaminants remain widely unadopted by the monitoring community. In this study, shotgun metagenomics was used to identify taste-and-odor producers and toxin-producing cyanobacteria over a 2-year period in a drinking water reservoir. The sequencing data implicated several cyanobacteria, including Anabaena spp., Microcystis spp., and an unresolved member of the order Oscillatoriales as the likely principal producers of geosmin, microcystin, and 2-methylisoborneol (MIB), respectively. To further demonstrate this, quantitative PCR (qPCR) assays targeting geosmin-producing Anabaena and microcystin-producing Microcystis were utilized, and these data were fitted using generalized linear models and compared with routine monitoring data, including microscopic cell counts, sonde-based physicochemical analyses, and assays of all inorganic and organic nitrogen and phosphorus forms and fractions. The qPCR assays explained the greatest variation in observed geosmin (adjusted R(2) = 0.71) and microcystin (adjusted R(2) = 0.84) concentrations over the study period, highlighting their potential for routine monitoring applications. The origin of the monoterpene cyclase required for MIB biosynthesis was putatively linked to a periphytic cyanobacterial mat attached to the concrete drinking water inflow structure. We conclude that shotgun metagenomics can be used to identify microbial agents involved in water quality deterioration and to guide PCR assay selection or design for routine monitoring purposes. Finally, we offer estimates of microbial diversity and metagenomic coverage of our data sets for reference to others wishing to apply shotgun metagenomics to other lacustrine systems. IMPORTANCE: Cyanobacterial toxins and microbial taste-and-odor compounds are a growing concern for drinking water utilities reliant upon surface water resources. Specific identification of the microorganism(s) responsible for water quality degradation is often complicated by the presence of co-occurring taxa capable of producing these undesirable metabolites. Here we present a framework for how shotgun metagenomics can be used to definitively identify problematic microorganisms and how these data can guide the development of rapid genetic assays for routine monitoring purposes.


Asunto(s)
Bacterias/aislamiento & purificación , Cianobacterias/aislamiento & purificación , Agua Potable/química , Agua Potable/microbiología , Agua Dulce/química , Agua Dulce/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Cianobacterias/clasificación , Cianobacterias/genética , Cianobacterias/metabolismo , Humanos , Metagenómica , Odorantes/análisis , Gusto , Abastecimiento de Agua
9.
Harmful Algae ; 54: 4-20, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-28073480

RESUMEN

This review summarizes the present state of knowledge regarding the toxic, bloom-forming cyanobacterium, Microcystis, with a specific focus on its geographic distribution, toxins, genomics, phylogeny, and ecology. A global analysis found documentation suggesting geographic expansion of Microcystis, with recorded blooms in at least 108 countries, 79 of which have also reported the hepatatoxin microcystin. The production of microcystins (originally "Fast-Death Factor") by Microcystis and factors that control synthesis of this toxin are reviewed, as well as the putative ecophysiological roles of this metabolite. Molecular biological analyses have provided significant insight into the ecology and physiology of Microcystis, as well as revealed the highly dynamic, and potentially unstable, nature of its genome. A genetic sequence analysis of 27 Microcystis species, including 15 complete/draft genomes are presented. Using the strictest biological definition of what constitutes a bacterial species, these analyses indicate that all Microcystis species warrant placement into the same species complex since the average nucleotide identity values were above 95%, 16S rRNA nucleotide identity scores exceeded 99%, and DNA-DNA hybridization was consistently greater than 70%. The review further provides evidence from around the globe for the key role that both nitrogen and phosphorus play in controlling Microcystis bloom dynamics, and the effect of elevated temperature on bloom intensification. Finally, highlighted is the ability of Microcystis assemblages to minimize their mortality losses by resisting grazing by zooplankton and bivalves, as well as viral lysis, and discuss factors facilitating assemblage resilience.


Asunto(s)
Ecosistema , Genoma Bacteriano/genética , Microcystis/fisiología , Animales , Genómica , Microcystis/genética , Filogeografía , ARN Ribosómico 16S/genética
10.
Harmful Algae ; 54: 223-238, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-28073479

RESUMEN

In early August 2014, the municipality of Toledo, OH (USA) issued a 'do not drink' advisory on their water supply directly affecting over 400,000 residential customers and hundreds of businesses (Wilson, 2014). This order was attributable to levels of microcystin, a potent liver toxin, which rose to 2.5µgL-1 in finished drinking water. The Toledo crisis afforded an opportunity to bring together scientists from around the world to share ideas regarding factors that contribute to bloom formation and toxigenicity, bloom and toxin detection as well as prevention and remediation of bloom events. These discussions took place at an NSF- and NOAA-sponsored workshop at Bowling Green State University on April 13 and 14, 2015. In all, more than 100 attendees from six countries and 15 US states gathered together to share their perspectives. The purpose of this review is to present the consensus summary of these issues that emerged from discussions at the Workshop. As additional reports in this special issue provide detailed reviews on many major CHAB species, this paper focuses on the general themes common to all blooms, such as bloom detection, modeling, nutrient loading, and strategies to reduce nutrients.


Asunto(s)
Cianobacterias/fisiología , Monitoreo del Ambiente/métodos , Floraciones de Algas Nocivas , Lagos/microbiología , China , Eutrofización , Great Lakes Region
11.
Environ Microbiol ; 18(2): 316-24, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26310611

RESUMEN

Eutrophication often manifests itself by increased frequencies and magnitudes of cyanobacterial harmful algal blooms (CyanoHABs) in freshwater systems. It is generally assumed that nitrogen-fixing cyanobacteria will dominate when nitrogen (N) is limiting and non-N2 fixers dominate when N is present in excess. However, this is rarely observed in temperate lakes, where N2 fixers often bloom when N is replete, and non-fixers (e.g. Microcystis) dominate when N concentrations are lowest. This review integrates observations from previous studies with insights into the environmental factors that select for CyanoHAB groups. This information may be used to predict how nutrient reduction strategies targeting N, phosphorus (P) or both N and P may alter cyanobacterial community composition. One underexplored concern is that as N inputs are reduced, CyanoHABs may switch from non-N2 fixing to diazotrophic taxa, with no net improvement in water quality. However, monitoring and experimental observations indicate that in eutrophic systems, minimizing both N and P loading will lead to the most significant reductions in total phytoplankton biomass without this shift occurring, because successional patterns appear to be strongly driven by physical factors, including temperature, irradiance and hydrology. Notably, water temperature is a primary driver of cyanobacterial community succession, with warming favouring non-diazotrophic taxa.


Asunto(s)
Floraciones de Algas Nocivas/fisiología , Lagos/microbiología , Microcystis/metabolismo , Fijación del Nitrógeno/fisiología , Fitoplancton/metabolismo , Biomasa , Nitrógeno/análisis , Nitrógeno/metabolismo , Fósforo/análisis , Temperatura
12.
Curr Environ Health Rep ; 2(1): 75-84, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26231244

RESUMEN

Cyanobacterial-derived water quality impairment issues are a growing concern worldwide. In addition to their ecological impacts, these organisms are prolific producers of bioactive secondary metabolites, many of which are known human intoxicants. To date only a handful of these compounds have been thoroughly studied and their toxicological risks estimated. While there are currently no national guidelines in place to deal with this issue, it is increasingly likely that within the next several years guidelines will be implemented. The intent of this review is to survey all relevant literature pertaining to cyanobacterial harmful algal bloom secondary metabolites, to inform a discussion on how best to manage this global public health threat.


Asunto(s)
Cianobacterias/patogenicidad , Agua Potable/microbiología , Salud Pública , Recreación , Cianobacterias/aislamiento & purificación , Agua Dulce/microbiología , Floraciones de Algas Nocivas , Humanos , Toxinas Marinas/toxicidad , Medición de Riesgo , Calidad del Agua/normas
14.
Microb Ecol ; 65(4): 995-1010, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23314096

RESUMEN

Cyanobacteria are the Earth's oldest oxygenic photoautotrophs and have had major impacts on shaping its biosphere. Their long evolutionary history (≈ 3.5 by) has enabled them to adapt to geochemical and climatic changes, and more recently anthropogenic modifications of aquatic environments, including nutrient over-enrichment (eutrophication), water diversions, withdrawals, and salinization. Many cyanobacterial genera exhibit optimal growth rates and bloom potentials at relatively high water temperatures; hence global warming plays a key role in their expansion and persistence. Bloom-forming cyanobacterial taxa can be harmful from environmental, organismal, and human health perspectives by outcompeting beneficial phytoplankton, depleting oxygen upon bloom senescence, and producing a variety of toxic secondary metabolites (e.g., cyanotoxins). How environmental factors impact cyanotoxin production is the subject of ongoing research, but nutrient (N, P and trace metals) supply rates, light, temperature, oxidative stressors, interactions with other biota (bacteria, viruses and animal grazers), and most likely, the combined effects of these factors are all involved. Accordingly, strategies aimed at controlling and mitigating harmful blooms have focused on manipulating these dynamic factors. The applicability and feasibility of various controls and management approaches is discussed for natural waters and drinking water supplies. Strategies based on physical, chemical, and biological manipulations of specific factors show promise; however, a key underlying approach that should be considered in almost all instances is nutrient (both N and P) input reductions; which have been shown to effectively reduce cyanobacterial biomass, and therefore limit health risks and frequencies of hypoxic events.


Asunto(s)
Cianobacterias/crecimiento & desarrollo , Ecosistema , Contaminación del Agua/prevención & control , Biomasa , Cambio Climático , Cianobacterias/clasificación , Monitoreo del Ambiente , Eutrofización , Microbiología del Agua
15.
Microb Ecol ; 62(4): 907-18, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21667196

RESUMEN

Blooms of the toxin-producing cyanobacterium, Microcystis spp., are an increasingly prevalent water quality problem and health hazard worldwide. China's third largest lake, Lake Taihu, has been experiencing progressively more severe Microcystis blooms over the past three decades. In 2009 and 2010, individual Microcystis colonies, consisting of four different morphospecies, were isolated and genotyped using a whole-cell multiplex PCR assay. The 16S-23S rDNA-ITS sequences were aligned based on Bayesian inference and indicated that one morphospecies was genetically unique (Microcystis wesenbergii) and three were indistinguishable (Microcystis aeruginosa, Microcystis flos-aquae, and Microcystis ichthyoblabe). Microcystin (mcyB) genes were detected intermittently in two of the morphospecies while the other two morphospecies lacked the mcyB gene in all samples. Water temperature was found to influence bloom formation and morphotype prevalence, and chlorophyll a and temperature were positively and significantly correlated with microcystin concentration. Cooler water temperatures promoted toxigenic strains of Microcystis. Wind appeared to influence the distribution of morphotypes across the lake, with M. aeruginosa and M. ichthyoblabe being more susceptible to wind stress than M. wesenbergii and M. flos-aquae. The results of this study indicated that the blooms were composed of a variety of Microcystis morphospecies, with more genotypes observed than can be attributed to individual morphotypes. We conclude that morphology is not a reliable indicator of toxigenicity in Lake Taihu, and caution should be exercised when the M. aeruginosa morphotype is present because it is capable of producing MC-LR, the most toxic microcystin isoform.


Asunto(s)
Agua Dulce/microbiología , Floraciones de Algas Nocivas , Microcystis/genética , Filogenia , Estaciones del Año , China , Clorofila/análisis , Clorofila A , ADN Bacteriano/genética , ADN Espaciador Ribosómico/genética , Lagos/microbiología , Microcistinas/genética , Microcystis/clasificación , ARN Ribosómico 16S/genética , ARN Ribosómico 23S/genética , Análisis de Secuencia de ADN , Temperatura , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...