Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 11567, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35798929

RESUMEN

The human brain can form cognitive maps of a spatial environment, which can support wayfinding. In this study, we investigated cognitive map formation of an environment presented in the tactile modality, in visually impaired and sighted persons. In addition, we assessed the acquisition of route and survey knowledge. Ten persons with a visual impairment (PVIs) and ten sighted control participants learned a tactile map of a city-like environment. The map included five marked locations associated with different items. Participants subsequently estimated distances between item pairs, performed a direction pointing task, reproduced routes between items and recalled item locations. In addition, we conducted questionnaires to assess general navigational abilities and the use of route or survey strategies. Overall, participants in both groups performed well on the spatial tasks. Our results did not show differences in performance between PVIs and sighted persons, indicating that both groups formed an equally accurate cognitive map. Furthermore, we found that the groups generally used similar navigational strategies, which correlated with performance on some of the tasks, and acquired similar and accurate route and survey knowledge. We therefore suggest that PVIs are able to employ a route as well as survey strategy if they have the opportunity to access route-like as well as map-like information such as on a tactile map.


Asunto(s)
Dispositivos de Autoayuda , Navegación Espacial , Cognición , Humanos , Aprendizaje , Tacto , Visión Ocular
2.
Neurosci Biobehav Rev ; 140: 104797, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35902045

RESUMEN

For efficient navigation, the brain needs to adequately represent the environment in a cognitive map. In this review, we sought to give an overview of literature about cognitive map formation based on non-visual modalities in persons with blindness (PWBs) and sighted persons. The review is focused on the auditory and haptic modalities, including research that combines multiple modalities and real-world navigation. Furthermore, we addressed implications of route and survey representations. Taking together, PWBs as well as sighted persons can build up cognitive maps based on non-visual modalities, although the accuracy sometime somewhat differs between PWBs and sighted persons. We provide some speculations on how to deploy information from different modalities to support cognitive map formation. Furthermore, PWBs and sighted persons seem to be able to construct route as well as survey representations. PWBs can experience difficulties building up a survey representation, but this is not always the case, and research suggests that they can acquire this ability with sufficient spatial information or training. We discuss possible explanations of these inconsistencies.


Asunto(s)
Ceguera , Tecnología Háptica , Encéfalo , Cognición , Humanos , Visión Ocular
3.
Sci Rep ; 11(1): 15254, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315940

RESUMEN

In this study, we compared cognitive map formation of small-scale models of city-like environments presented in visual or tactile/haptic modalities. Previous research often addresses only a limited amount of cognitive map aspects. We wanted to combine several of these aspects to elucidate a more complete view. Therefore, we assessed different types of spatial information, and consider egocentric as well as allocentric perspectives. Furthermore, we compared haptic map learning with visual map learning. In total 18 sighted participants (9 in a haptic condition, 9 visuo-haptic) learned three tactile maps of city-like environments. The maps differed in complexity, and had five marked locations associated with unique items. Participants estimated distances between item pairs, rebuilt the map, recalled locations, and navigated two routes, after learning each map. All participants overall performed well on the spatial tasks. Interestingly, only on the complex maps, participants performed worse in the haptic condition than the visuo-haptic, suggesting no distinct advantage of vision on the simple map. These results support ideas of modality-independent representations of space. Although it is less clear on the more complex maps, our findings indicate that participants using only haptic or a combination of haptic and visual information both form a quite accurate cognitive map of a simple tactile city-like map.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...