Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PeerJ ; 11: e15154, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37096064

RESUMEN

Background: The sirtuins (SIRTs) family is a nicotinamide adenine dinucleotide (NAD+) family of dependent deacetylases, which includes SIRT1-7. This family is related to the development and progression of various tumors. However, a comprehensive analysis of the role of SIRTs in clear cell renal cell carcinoma (ccRCC) is still lacking, and there are few reports on the inhibitory role of SIRT5 in ccRCC. Methods: We used immunohistochemical analysis, and several bioinformatic databases to perform an integrated analysis of the expression and prognostic value of SIRT5 and other SIRT family members in ccRCC along with the associated immune cell infiltration. These databases include TIMER, THPA, cell culture, UALCAN, cBioPortal, WebGestalt, Metascape, DiseaseMeth, STRING database, and Cytoscape. Results: The protein expression of SIRT1, 2, 3, 6, and 7 were upregulated in ccRCC for the Human Protein Atlas database, whereas the expression of SIRT4 and SIRT5 was decreased. The expression based on tumor stage, and grade followed a similar trend. Kaplan-Meier analysis showed that high SIRT4 and SIRT5 expression was positively related to better overall survival (OS), whereas SIRT6 and SIRT7 expression was positively related to worse OS. Further, high SIRT3 expression was related to worse relapse-free survival (RFS), whereas high SIRT5 expression was related to better RFS. To explore the mechanism underlying the function of SIRTs in ccRCC, we also used several databases to perform the functional enrichment analysis and explore the relationship between infiltrating immune cells and seven SIRT family members in ccRCC. The results showed that several SIRT family members, and particularly SIRT5, are correlated with the infiltration of some important immune cells. The protein expression of SIRT5 was significantly lower in tumor tissue compared to normal tissue and was negatively related to the age of the patient ccRCC individual tumor stages, and grades. In human ccRCC samples, strong IHC staining expression of SIRT5 was displayed in adjacent normal tissue than in tumor tissues. Conclusion: SIRT5 may be a prognostic marker and a novel strategy for the treatment of ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Sirtuinas , Humanos , Biomarcadores , Carcinoma de Células Renales/metabolismo , Neoplasias Renales/metabolismo , Recurrencia Local de Neoplasia , Pronóstico
2.
Front Oncol ; 12: 1043862, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36505798

RESUMEN

Background: The GSDM family includes six members, GSDMA, GSDMB, GSDMC, GSDMD, GSDME (DFNA5), and PJVK (Pejvakin, DFNB59), which can induce pyroptosis, thereby regulating the tumorigenesis of various cancers. However, the clinical characteristics and role of the GSDM family in LUAD are not well understood. Methods: In this study, several important bioinformatics databases were used to integrate the analysis of the expression, prognostic value, and immune infiltration of GSDMs in LUAD. These databases include UALCAN, DiseaseMeth, GEPIA, THPA, cBioPortal, TIMER, WebGestalt, STRING database, and Cytoscape. Results: The findings from the UALCAN database revealed that the expression of all six GSDMs based on the tumor stage in LUAD was increased (particularly GSDMD). Our IHC results verified it. Additionally, the DiseaseMeth database showed that the methylation levels of GSDMA, GSDMB, GSDMC, and GSDMD were decreased. The expression of six GSDMs was related to shorter overall survival in patients with LUAD, according to the GEPIA database. The cBioPortal database was further used to explore the alteration rate and correlated genes in LUAD. Subsequently, these genes were subjected to functional enrichment and protein-protein interaction network analyses. We identified that the GSDM family regulate several signaling pathways, including immune-associated signaling pathways. According to tumor-infiltrating immune cell analysis from the TIMER database, GSDM family members are associated with the infiltration of important immune cells and their signature markers. Conclusions: GSDM family may be prognostic markers and novel strategies for the treatment of LUAD.

3.
World J Diabetes ; 12(8): 1282-1291, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34512893

RESUMEN

BACKGROUND: Diabetic macrovascular complications (DMCs) are the most common complications encountered during the course of diabetes mellitus (DM) with extremely high mortality rates. Therefore, there is an urgent need to identify specific and sensitive biomarkers for the early diagnosis of DMCs. AIM: To investigate the expression and significance of serum miR-129-5p in patients with DM and macrovascular complications. METHODS: Serum samples were collected from 36 healthy controls, 58 patients with DM presenting no macrovascular complications, and 62 patients with DMCs. The expression of miR-129-5p was detected using quantitative real-time polymerase chain reaction. Pearson's correlation assay was performed to analyze the correlation between serum miR-129-5p levels and clinical indicators. Receiver operator characteristic (ROC) analysis was conducted to analyze the diagnostic value of serum miR-129-5p in patients with DM or DMCs. RESULTS: There was a 4.378-fold and 7.369-fold increase in serum miR-129-5p expression in the DM (5.346 ± 0.405) and DMCs (8.998 ± 0.631) groups, respectively (P < 0.001), compared with the control group (1.221±0.090). In addition, the expression of serum miR-129-5p in patients with DMCs was higher than that in patients with DM, revealing a 1.683-fold increase (P < 0.001). Additionally, serum miR-129-5p expression significantly correlated with smoking history, disease duration, and glycated hemoglobin (HbA1c) in patients with DMCs (P < 0.001). The area under the ROC curve (AUC) of miR-129-5p as a serum marker was 0.964 (95% confidence interval [CI]: 0.930-0.997, P < 0.001) in distinguishing between patients with DM and healthy controls, whereas the AUC of miR-129-5p as a serum marker was 0.979 (95%CI: 0.959-0.999, P < 0.001) in distinguishing between patients with DMCs and healthy controls. CONCLUSION: Elevated serum miR-129-5p expression levels correlate with the development of DMCs and can be utilized as a novel early diagnostic biomarker for DM combined with macrovascular complications.

4.
World J Gastrointest Oncol ; 13(8): 867-878, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34457192

RESUMEN

Exosomes are a class of small extracellular vesicles, 30-150 nm in diameter, that transfer biological information (e.g., DNA, RNA, and protein) via cell-to-cell communication. Exosomes play critical roles in the occurrence and development of human cancers, including colorectal cancer (CRC). Recent studies have shown that long non-coding RNAs (lncRNAs) can be encapsulated in exosomes, which transfer lncRNAs from secretory cells into recipient cells. This process affects the progression of CRC, since exosomal lncRNAs display special and extensive functions in CRC tumorigenesis, including malignant proliferation, metastasis, chemoresistance, and inflammatory response. Moreover, due to their specificity and sensitivity, exosomal lncRNAs are released into body fluids (e.g., urine, sputum, and plasma), which have the potential to be biomarkers of CRC tumorigenesis within screening efforts and medical and epidemiologic research. In this review, we aim to clarify the function and mechanism of exosomal lncRNAs in CRC tumorigenesis and provide a strategy for early diagnosis and medical treatment of this malignancy.

5.
Mol Med Rep ; 17(2): 2366-2372, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29207067

RESUMEN

Platelet-activating factor (PAF), protein kinase C (PKC)ßI, transforming growth factor (TGF)­ß1 and aberrant extracellular matrix (ECM) deposition have been associated with diabetic nephropathy (DN). However, the mechanistic basis underlying this association remains to be elucidated. The present study investigated the association among the aforementioned factors in a DN model consisting of human mesangial cells (HMCs) exposed to high glucose (HG) and lysophosphatidylcholine (LPC) treatments. HMCs were divided into the following treatment groups: Control; PAF; PAF+PKCßI inhibitor LY333531; HG + LPC; PAF + HG + LPC; and PAF + HG + LPC + LY333531. Cells were cultured for 24 h, and PKCßI and TGF­ß1 expression was determined using the reverse transcription­quantitative polymerase chain reaction and western blotting. The expression levels of the ECM­associated molecules collagen IV and fibronectin in the supernatant were detected using ELISA analysis. Subcellular localization of PKCßI was assessed using immunocytochemistry. PKCßI and TGF­ß1 expression was increased in the PAF + HG + LPC group compared with the other groups (P<0.05); however, this effect was abolished in the presence of LY333531 (P<0.05). Supernatant fibronectin and collagen IV levels were increased in the PAF + HG + LPC group compared with the others (P<0.05); this was reversed by treatment with LY333531 (P<0.05). In cells treated with PAF, HG and LPC, PKCßI was translocated from the cytosol to the nucleus, an effect which was blocked when PKCßI expression was inhibited (P<0.05). The findings of the present study demonstrated that PAF stimulated ECM deposition in HMCs via activation of the PKC­TGF­ß1 axis in a DN model.


Asunto(s)
Glucemia , Nefropatías Diabéticas/metabolismo , Matriz Extracelular/metabolismo , Lisofosfatidilcolinas/sangre , Glicoproteínas de Membrana Plaquetaria/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Biomarcadores , Estudios de Casos y Controles , Nefropatías Diabéticas/sangre , Regulación de la Expresión Génica , Humanos , Proteína Quinasa C beta/genética , Proteína Quinasa C beta/metabolismo , Transporte de Proteínas , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
6.
Oncotarget ; 8(57): 97052-97060, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29228592

RESUMEN

Long non-coding RNAs (lncRNAs) are increasingly implicated in tumorigenesis and cancer progression. This study focused on the relationship between the lncRNA LINC00959 and colorectal cancer (CRC). We found that LINC00959 expression was lower in CRC tissues than normal colorectal mucosae. High LINC00959 expression was negatively associated with TNM stage, distant metastasis, and lymphatic metastasis, and correlated with a better prognosis in 87 CRC cases. In vitro, LINC00959 knockdown enhanced colon cancer cell proliferation, invasion, and migration; upregulated N-cadherin and vimentin; and downregulated E-cadherin and Caspase-3. LINC00959 overexpression produced the opposite effects. These data suggest that LINC00959 inhibits tumor cell invasion and migration by suppressing epithelial-mesenchymal transition and promotes apoptosis through Caspase-3. LINC00959 may be a tumor suppressor and useful prognostic biomarker in CRC.

7.
J Org Chem ; 82(15): 8031-8039, 2017 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-28726405

RESUMEN

Unlike the high fluorescence quantum yield of the naturally occurring green fluorescence protein (GFP, Φf ∼ 0.8), the GFP chromophore, a benzylidenedimethylimidazolinone (BDI) dye, is nearly nonfluorescent (Φf < 0.001) in common solutions at room temperature. While many efforts have been devoted into the BDI chromophore engineering for fluorescence recovery, limited success has been achieved for structurally unconstrained GFP chromophore analogues (uGFPc). Herein we report a rational design of uGFPc toward an unprecedentedly high fluorescence quantum efficiency of 0.60 in hexane. This is achieved by a combined ortho-CN and meta-dimethylamino substituent electronic effect that largely suppresses the Z → E photoisomerization (the τ torsion) reaction, which is the major nonradiative decay channel of uGFPc. The structural design relied on the assumptions that the τ torsion of the meta-amino-substituted BDI systems leads to a zwitterionic twisted intermediate state (1p*) and that destabilizing the 1p* state by an electron-withdrawing CN substituent at the ortho or para position could slow down the τ torsion. The observed CN position effect conforms to the design concept. The push-pull substitution of BDI also leads to sensitive fluorescence-quenching responses to electron donors such as trimethylamine and to H-bond donors such as methanol.

8.
J Org Chem ; 80(24): 12431-43, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26583964

RESUMEN

This paper provides the first example of experimentally characterized hydrogen-bond cooperativity on fluorescence quenching with a modified green fluorescence protein (GFP) chromophore that contains a 6-membered C═N···H-O and a 7-membered C═O···H-O intramolecular H-bonds. Variable-temperature (1)H NMR and electronic absorption and emission spectroscopies were used to elucidate the preference of intra- vs intermolecular H-bonding at different concentrations (1 mM and 10 µM), and X-ray crystal structures provide clues of possible intermolecular H-bonding modes. In the ground state, the 6-membered H-bond is significant but the 7-membered one is rather weak. However, fluorescence quenching is dominated by the 7-membered H-bond, indicating a strengthening of the H-bond in the excited state. The H-bonding effect is more pronounced in more polar solvents, and no intermediates were observed from femtosecond fluorescence decays. The fluorescence quenching is attributed to the occurrence of diabatic excited-state proton transfer. Cooperativity of the two intramolecular H-bonds on spectral shifts and fluorescence quenching is evidenced by comparing with both the single H-bonded and the non-H-bonded counterparts. The H-bond cooperativity does not belong to the conventional patterns of σ- and π-cooperativity but a new type of polarization interactions, which demonstrates the significant interplay of H-bonds for multiple H-bonding systems in the electronically excited states.

9.
Analyst ; 138(5): 1379-85, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23330148

RESUMEN

A nanomaterial-assisted method that combines thin layer chromatography (TLC) with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) was developed to directly monitor chemical transformations. A substrate-dependent extraction strategy was studied and successfully used to identify target molecules from the depths of a developed TLC plate. By using this strategy, a hydrophobic sample of interest was enriched on the surface of the TLC plate in the presence of acetonitrile, in contrast to using water and methanol to identify hydrophilic samples. The successful enrichment of samples by specific solvents provided stable desorption/ionization efficiencies of compounds of interest and led to very good sensitivity near the attomole scale. The method was then used to monitor 4-dimethylaminopyridine (DMAP)-catalyzed acylation in preparation of bifunctional sulfonamides. The labile DMAP-acyl intermediate and final sulfonamide product were clearly identified on TLC plates without external purification or sample preparation. Furthermore, in combination with collision-induced dissociation (CID) to provide structural information, the technique was successfully used in the natural product discovery of anti-inflammatory flavonoids from Helminthostachys zeylanica, a traditional Chinese herb. The newly proposed method provides a very low background from silica supports or organic matrices in the low molecular weight range (100-1000 Da). The technique may greatly accelerate studies of metabolomics, drug discovery, and organic synthesis.


Asunto(s)
Cromatografía en Capa Delgada/métodos , Nanopartículas/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , 4-Aminopiridina/análogos & derivados , 4-Aminopiridina/química , Catálisis , Helechos/química , Flavonoides/análisis , Extractos Vegetales/análisis , Sulfonamidas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...