Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 57(19): 2321-2333.e9, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36220082

RESUMEN

Blood-vessel formation generates unique vascular patterns in each individual. The principles governing the apparent stochasticity of this process remain to be elucidated. Using mathematical methods, we find that the transition between two fundamental vascular morphogenetic programs-sprouting angiogenesis and vascular remodeling-is established by a shift of collective front-to-rear polarity of endothelial cells in the mouse retina. We demonstrate that the competition between biochemical (VEGFA) and mechanical (blood-flow-induced shear stress) cues controls this collective polarity shift. Shear stress increases tension at focal adhesions overriding VEGFA-driven collective polarization, which relies on tension at adherens junctions. We propose that vascular morphogenetic cues compete to regulate individual cell polarity and migration through tension shifts that translates into tissue-level emergent behaviors, ultimately leading to uniquely organized vascular patterns.


Asunto(s)
Polaridad Celular , Células Endoteliales , Uniones Adherentes/metabolismo , Animales , Movimiento Celular/fisiología , Polaridad Celular/fisiología , Células Endoteliales/metabolismo , Ratones , Morfogénesis , Retina/metabolismo
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 549-552, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086569

RESUMEN

Fluorescence microscopy images of cell organelles enable the study of various complex biological processes. Recently, deep learning (DL) models are being used for the accurate automatic analysis of these images. DL models present state-of-the-art performance in many image analysis tasks such as object classification, segmentation and detection. However, to train a DL model a large manually annotated dataset is required. Manual annotation of 3D microscopy images is a time-consuming task and must be performed by specialists in the area. Thus, only a few images with annotations are typically available. Recent advances in generative adversarial networks (GANs) have allowed the translation of images with some conditions into realistic looking synthetic images. Therefore, in this work we explore approaches based on GANs to create synthetic 3D microscopy images. We compare four approaches that differ in the conditions of the input image. The quality of the generated images was assessed visually and using a quantitative objective GAN evaluation metric. The results showed that the GAN is able to generate synthetic images similar to the real ones. Hence, we have presented a method based on GANs to overcome the issue of small annotated datasets in the biomedical imaging field.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Proyectos de Investigación , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente
3.
Elife ; 112022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35787830

RESUMEN

Trypanosoma congolense causes a syndrome of variable severity in animals in Africa. Cerebral trypanosomiasis is a severe form, but the mechanism underlying this severity remains unknown. We developed a mouse model of acute cerebral trypanosomiasis and characterized the cellular, behavioral, and physiological consequences of this infection. We show large parasite sequestration in the brain vasculature for long periods of time (up to 8 hr) and extensive neuropathology that associate with ICAM1-mediated recruitment and accumulation of T cells in the brain parenchyma. Antibody-mediated ICAM1 blocking and lymphocyte absence reduce parasite sequestration in the brain and prevent the onset of cerebral trypanosomiasis. Here, we establish a mouse model of acute cerebral trypanosomiasis and we propose a mechanism whereby parasite sequestration, host ICAM1, and CD4+ T cells play a pivotal role.


Asunto(s)
Parásitos , Trypanosoma congolense , Tripanosomiasis Africana , Tripanosomiasis , Animales , Modelos Animales de Enfermedad , Ratones , Tripanosomiasis Africana/parasitología
4.
Cardiovasc Res ; 118(7): 1805-1820, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34086873

RESUMEN

AIMS: BMP9 and BMP10 mutations were recently identified in patients with pulmonary arterial hypertension, but their specific roles in the pathogenesis of the disease are still unclear. We aimed to study the roles of BMP9 and BMP10 in cardiovascular homeostasis and pulmonary hypertension using transgenic mouse models deficient in Bmp9 and/or Bmp10. METHODS AND RESULTS: Single- and double-knockout mice for Bmp9 (constitutive) and/or Bmp10 (tamoxifen inducible) were generated. Single-knock-out (KO) mice developed no obvious age-dependent phenotype when compared with their wild-type littermates. However, combined deficiency in Bmp9 and Bmp10 led to vascular defects resulting in a decrease in peripheral vascular resistance and blood pressure and the progressive development of high-output heart failure and pulmonary hemosiderosis. RNAseq analysis of the lungs of the double-KO mice revealed differential expression of genes involved in inflammation and vascular homeostasis. We next challenged these mice to chronic hypoxia. After 3 weeks of hypoxic exposure, Bmp10-cKO mice showed an enlarged heart. However, although genetic deletion of Bmp9 in the single- and double-KO mice attenuated the muscularization of pulmonary arterioles induced by chronic hypoxia, we observed no differences in Bmp10-cKO mice. Consistent with these results, endothelin-1 levels were significantly reduced in Bmp9 deficient mice but not Bmp10-cKO mice. Furthermore, the effects of BMP9 on vasoconstriction were inhibited by bosentan, an endothelin receptor antagonist, in a chick chorioallantoic membrane assay. CONCLUSIONS: Our data show redundant roles for BMP9 and BMP10 in cardiovascular homeostasis under normoxic conditions (only combined deletion of both Bmp9 and Bmp10 was associated with severe defects) but highlight specific roles under chronic hypoxic conditions. We obtained evidence that BMP9 contributes to chronic hypoxia-induced pulmonary vascular remodelling, whereas BMP10 plays a role in hypoxia-induced cardiac remodelling in mice.


Asunto(s)
Receptores de Activinas Tipo II , Factor 2 de Diferenciación de Crecimiento , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Factor 2 de Diferenciación de Crecimiento/genética , Factor 2 de Diferenciación de Crecimiento/metabolismo , Hipoxia , Pulmón/metabolismo , Ratones , Ratones Noqueados , Fenotipo
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3017-3020, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34891879

RESUMEN

Blood vessels provide oxygen and nutrients to all tissues in the human body, and their incorrect organisation or dysfunction contributes to several diseases. Correct organisation of blood vessels is achieved through vascular patterning, a process that relies on endothelial cell polarization and migration against the blood flow direction. Unravelling the mechanisms governing endothelial cell polarity is essential to study the process of vascular patterning. Cell polarity is defined by a vector that goes from the nucleus centroid to the corresponding Golgi complex centroid, here defined as axial polarity. Currently, axial polarity is calculated manually, which is time-consuming and subjective. In this work, we used a deep learning approach to segment nuclei and Golgi in 3D fluorescence microscopy images of mouse retinas, and to assign nucleus-Golgi pairs. This approach predicts nuclei and Golgi segmentation masks but also a third mask corresponding to joint nuclei and Golgi segmentations. The joint segmentation mask is used to perform nucleus-Golgi pairing. We demonstrate that our deep learning approach using three masks successfully identifies nucleus-Golgi pairs, outperforming a pairing method based on a cost matrix. Our results pave the way for automated computation of axial polarity in 3D tissues and in vivo.


Asunto(s)
Núcleo Celular , Imagenología Tridimensional , Animales , Aparato de Golgi , Ratones , Microscopía Fluorescente
6.
Cell Rep ; 36(12): 109741, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34551286

RESUMEN

Trypanosoma brucei is responsible for lethal diseases in humans and cattle in Sub-Saharan Africa. These extracellular parasites extravasate from the blood circulation into several tissues. The importance of the vasculature in tissue tropism is poorly understood. Using intravital imaging and bioluminescence, we observe that gonadal white adipose tissue and pancreas are the two main parasite reservoirs. We show that reservoir establishment happens before vascular permeability is compromised, suggesting that extravasation is an active mechanism. Blocking endothelial surface adhesion molecules (E-selectin, P-selectins, or ICAM2) significantly reduces extravascular parasite density in all organs and delays host lethality. Remarkably, blocking CD36 has a specific effect on adipose tissue tropism that is sufficient to delay lethality, suggesting that establishment of the adipose tissue reservoir is necessary for parasite virulence. This work demonstrates the importance of the vasculature in a T. brucei infection and identifies organ-specific adhesion molecules as key players for tissue tropism.


Asunto(s)
Antígenos CD/metabolismo , Moléculas de Adhesión Celular/metabolismo , Selectina E/metabolismo , Selectina-P/metabolismo , Trypanosoma brucei brucei/patogenicidad , Tejido Adiposo Blanco/parasitología , Animales , Anticuerpos/inmunología , Antígenos CD/inmunología , Antígenos CD36/metabolismo , Moléculas de Adhesión Celular/inmunología , Selectina E/inmunología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Selectina-P/inmunología , Páncreas/parasitología , Parasitemia/mortalidad , Parasitemia/patología , Parasitemia/veterinaria , Tasa de Supervivencia , Trypanosoma brucei brucei/fisiología , Regulación hacia Arriba , Virulencia
7.
Cells Dev ; 168: 203735, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34425253

RESUMEN

The vascular system is essential for embryogenesis, healing, and homeostasis. Dysfunction or deregulated blood vessel function contributes to multiple diseases, including diabetic retinopathy, cancer, hypertension, or vascular malformations. A balance between the formation of new blood vessels, vascular remodeling, and vessel quiescence is fundamental for tissue growth and function. Whilst the major mechanisms contributing to the formation of new blood vessels have been well explored in recent years, vascular remodeling and quiescence remain poorly understood. In this review, we highlight the cellular and molecular mechanisms responsible for vessel remodeling and quiescence during angiogenesis. We further underline how impaired remodeling and/or destabilization of vessel networks can contribute to vascular pathologies. Finally, we speculate how addressing the molecular mechanisms of vascular remodeling and stabilization could help to treat vascular-related disorders.


Asunto(s)
Neovascularización Patológica , Remodelación Vascular , Humanos
8.
Curr Opin Hematol ; 28(3): 208-213, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33656462

RESUMEN

PURPOSE OF REVIEW: Endothelial cell (EC) front-rear (axial) polarization in response to chemokines and shear stress is fundamental for angiogenesis. This review provides an overview of the in vitro and in vivo methods that are currently available to quantify EC axial polarity. RECENT FINDINGS: Innovative methodologies and new animal models have been developed to evaluate EC axial polarity. Micropatterning, wound healing and microfluidic assays allow interrogation of signalling mechanisms in vitro. Mouse and zebrafish transgenic lines, in combination with advances in imaging techniques and computational tools, enable interrogation of physiological functions of EC axial polarity in vascular biology during development and in pathology in vivo. SUMMARY: We present a literature-based review of the methods available to study EC polarity. Further refinement of quantitative methods to analyse EC axial polarity using deep learning-based computational tools will generate new understanding on the aetiology of vascular malformations.


Asunto(s)
Polaridad Celular , Técnicas Citológicas/métodos , Células Endoteliales/citología , Células Endoteliales/fisiología , Animales , Vasos Sanguíneos/citología , Vasos Sanguíneos/fisiología , Biología Computacional/métodos , Aprendizaje Profundo , Susceptibilidad a Enfermedades , Humanos , Técnicas In Vitro , Modelos Animales , Enfermedades Vasculares/etiología , Enfermedades Vasculares/metabolismo
9.
Elife ; 92020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-32073398

RESUMEN

As the general population ages, more people are affected by eye diseases, such as retinopathies. It is therefore critical to improve imaging of eye disease mouse models. Here, we demonstrate that 1) rapid, quantitative 3D and 4D (time lapse) imaging of cellular and subcellular processes in the mouse eye is feasible, with and without tissue clearing, using light-sheet fluorescent microscopy (LSFM); 2) flat-mounting retinas for confocal microscopy significantly distorts tissue morphology, confirmed by quantitative correlative LSFM-Confocal imaging of vessels; 3) LSFM readily reveals new features of even well-studied eye disease mouse models, such as the oxygen-induced retinopathy (OIR) model, including a previously unappreciated 'knotted' morphology to pathological vascular tufts, abnormal cell motility and altered filopodia dynamics when live-imaged. We conclude that quantitative 3D/4D LSFM imaging and analysis has the potential to advance our understanding of the eye, in particular pathological, neurovascular, degenerative processes.


Eye diseases affect millions of people worldwide and can have devasting effects on people's lives. To find new treatments, scientists need to understand more about how these diseases arise and how they progress. This is challenging and progress has been held back by limitations in current techniques for looking at the eye. Currently, the most commonly used method is called confocal imaging, which is slow and distorts the tissue. Distortion happens because confocal imaging requires that thin slices of eye tissue from mice used in experiments are flattened on slides; this makes it hard to accurately visualize three-dimensional structures in the eye. New methods are emerging that may help. One promising method is called light-sheet fluorescent microscopy (or LSFM for short). This method captures three-dimensional images of the blood vessels and cells in the eye. It is much faster than confocal imaging and allows scientists to image tissues without slicing or flattening them. This could lead to more accurate three-dimensional images of eye disease. Now, Prahst et al. show that LSFM can quickly produce highly detailed, three-dimensional images of mouse retinas, from the smallest parts of cells to the entire eye. The technique also identified new features in a well-studied model of retina damage caused by excessive oxygen exposure in young mice. Previous studies of this model suggested the disease caused blood vessels in the eye to balloon, hinting that drugs that shrink blood vessels would help. But using LSFM, Prahst et al. revealed that these blood vessels actually take on a twisted and knotted shape. This suggests that treatments that untangle the vessels rather than shrink them are needed. The experiments show that LSFM is a valuable tool for studying eye diseases, that may help scientists learn more about how these diseases arise and develop. These new insights may one day lead to better tests and treatments for eye diseases.


Asunto(s)
Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Retina/fisiología , Animales , Oftalmopatías/diagnóstico , Oftalmopatías/terapia , Imagenología Tridimensional/métodos , Ratones , Vasos Retinianos/diagnóstico por imagen
10.
Cells ; 8(9)2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31540222

RESUMEN

The aim of the present work was to address the role of BMP9 in different genetic backgrounds (C57BL/6, BALB/c, and 129/Ola) of mice deleted for Bmp9. We found that Bmp9 deletion led to premature mortality only in the 129/Ola strain. We have previously shown that Bmp9 deletion led to liver sinusoidal endothelial cells (LSEC) capillarization and liver fibrosis in the 129/Ola background. Here, we showed that this is not the case in the C57BL/6 background. Analysis of LSEC from Wild-type (WT) versus Bmp9-KO mice in the C57BL/6 background showed no difference in LSEC fenestration and in the expression of differentiation markers. Comparison of the mRNA expression of LSEC differentiation markers between WT C57BL/6 and 129/Ola mice showed a significant decrease in Stabilin2, Plvap, and CD209b, suggesting a more capillary-like phenotype in WT C57BL/6 LSECs. C57BL/6 mice also had lower BMP9 circulating concentrations and hepatic Vegfr2 mRNA levels, compared to the 129/Ola mice. Taken together, our observations support a role for BMP9 in liver endothelial cell fenestration and prevention of fibrosis that is dependent on genetic background. It also suggests that 129/Ola mice are a more suitable model than C57BL/6 for the study of liver fibrosis subsequent to LSEC capillarization.


Asunto(s)
Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Factor 2 de Diferenciación de Crecimiento/fisiología , Cirrosis Hepática , Hígado/metabolismo , Animales , Biomarcadores/metabolismo , Capilares/metabolismo , Capilares/patología , Diferenciación Celular , Células Endoteliales/patología , Factor 2 de Diferenciación de Crecimiento/genética , Hígado/patología , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
11.
Genesis ; 57(6): e23299, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30990965

RESUMEN

Cell migration is essential during development, regeneration, homeostasis, and disease. Depending on the microenvironment, cells use different mechanisms to migrate. Yet, all modes of migration require the establishment of an intracellular front-rear polarity axis for directional movement. Although front-rear polarity can be easily identified in in vitro conditions, its assessment in vivo by live-imaging is challenging due to tissue complexity and lack of reliable markers. Here, we describe a novel and unique double fluorescent reporter mouse line to study front-rear cell polarity in living tissues, called GNrep. This mouse line simultaneously labels Golgi complexes and nuclei allowing the assignment of a nucleus-to-Golgi axis to each cell, which functions as a readout for cell front-rear polarity. As a proof-of-principle, we validated the efficiency of the GNrep line using an endothelial-specific Cre mouse line. We show that the GNrep labels the nucleus and the Golgi apparatus of endothelial cells with very high efficiency and high specificity. Importantly, the features of fluorescent intensity and localization for both mCherry and eGFP fluorescent intensity and localization allow automated segmentation and assignment of polarity vectors in complex tissues, making GNrep a great tool to study cell behavior in large-scale automated analyses. Altogether, the GNrep mouse line, in combination with different Cre recombinase lines, is a novel and unique tool to study of front-rear polarity in mice, both in fixed tissues or in intravital live imaging. This new line will be instrumental to understand cell migration and polarity in development, homeostasis, and disease.


Asunto(s)
Polaridad Celular/fisiología , Ingeniería de Proteínas/métodos , Animales , Movimiento Celular/fisiología , Núcleo Celular/metabolismo , Polaridad Celular/genética , Células Endoteliales , Colorantes Fluorescentes , Genes Reporteros , Aparato de Golgi/metabolismo , Ratones
12.
Hepatology ; 70(4): 1392-1408, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30964206

RESUMEN

Bone morphogenetic protein 9 (BMP9) is a circulating factor produced by hepatic stellate cells that plays a critical role in vascular quiescence through its endothelial receptor activin receptor-like kinase 1 (ALK1). Mutations in the gene encoding ALK1 cause hereditary hemorrhagic telangiectasia type 2, a rare genetic disease presenting hepatic vessel malformations. Variations of both the circulating levels and the hepatic mRNA levels of BMP9 have been recently associated with various forms of hepatic fibrosis. However, the molecular mechanism that links BMP9 with liver diseases is still unknown. Here, we report that Bmp9 gene deletion in 129/Ola mice triggers hepatic perisinusoidal fibrosis that was detectable from 15 weeks of age. An inflammatory response appeared within the same time frame as fibrosis, whereas sinusoidal vessel dilation developed later on. Proteomic and mRNA analyses of primary liver sinusoidal endothelial cells (LSECs) both revealed that the expression of the LSEC-specifying transcription factor GATA-binding protein 4 was strongly reduced in Bmp9 gene knockout (Bmp9-KO) mice as compared with wild-type mice. LSECs from Bmp9-KO mice also lost the expression of several terminal differentiation markers (Lyve1, Stab1, Stab2, Ehd3, Cd209b, eNos, Maf, Plvap). They gained CD34 expression and deposited a basal lamina, indicating that they were capillarized. Another main characteristic of differentiated LSECs is the presence of permeable fenestrae. LSECs from Bmp9-KO mice had a significantly reduced number of fenestrae. This was already observable in 2-week-old pups. Moreover, we could show that addition of BMP9 to primary cultures of LSECs prevented the loss of their fenestrae and maintained the expression levels of Gata4 and Plvap. Conclusion: Taken together, our observations show that BMP9 is a key paracrine regulator of liver homeostasis, controlling LSEC fenestration and protecting against perivascular hepatic fibrosis.


Asunto(s)
Receptores de Activinas Tipo II/genética , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Factor 2 de Diferenciación de Crecimiento/genética , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/citología , Factor 2 de Diferenciación de Crecimiento/metabolismo , Células Estrelladas Hepáticas/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteómica , ARN Mensajero/genética , Distribución Aleatoria , Estadísticas no Paramétricas , Técnicas de Cultivo de Tejidos/métodos
13.
J Exp Clin Cancer Res ; 37(1): 209, 2018 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-30165893

RESUMEN

BACKGROUND: Angiogenesis has become an attractive target for cancer therapy. However, despite the initial success of anti-VEGF (Vascular endothelial growth factor) therapies, the overall survival appears only modestly improved and resistance to therapy often develops. Other anti-angiogenic targets are thus urgently needed. The predominant expression of the type I BMP (bone morphogenetic protein) receptor ALK1 (activin receptor-like kinase 1) in endothelial cells makes it an attractive target, and phase I/II trials are currently being conducted. ALK1 binds with strong affinity to two ligands that belong to the TGF-ß family, BMP9 and BMP10. In the present work, we addressed their specific roles in tumor angiogenesis, cancer development and metastasis in a mammary cancer model. METHODS: For this, we used knockout (KO) mice for BMP9 (constitutive Gdf2-deficient), for BMP10 (inducible Bmp10-deficient) and double KO mice (Gdf2 and Bmp10) in a syngeneic immunocompetent orthotopic mouse model of spontaneous metastatic breast cancer (E0771). RESULTS: Our studies demonstrate a specific role for BMP9 in the E0771 mammary carcinoma model. Gdf2 deletion increased tumor growth while inhibiting vessel maturation and tumor perfusion. Gdf2 deletion also increased the number and the mean size of lung metastases. On the other hand, Bmp10 deletion did not significantly affect the E0771 mammary model and the double deletion (Gdf2 and Bmp10) did not lead to a stronger phenotype than the single Gdf2 deletion. CONCLUSIONS: Altogether, our data show that in a tumor environment BMP9 and BMP10 play different roles and thus blocking their shared receptor ALK1 is maybe not appropriate. Indeed, BMP9, but not BMP10, acts as a quiescence factor on tumor growth, lung metastasis and vessel normalization. Our results also support that activating rather than blocking the BMP9 pathway could be a new strategy for tumor vessel normalization in order to treat breast cancer.


Asunto(s)
Receptores de Activinas Tipo I/genética , Proteínas Morfogenéticas Óseas/genética , Neoplasias de la Mama/genética , Factor 2 de Diferenciación de Crecimiento/genética , Neoplasias Mamarias Animales/genética , Receptores de Activinas Tipo II , Animales , Neoplasias de la Mama/patología , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Femenino , Humanos , Neoplasias Mamarias Animales/patología , Ratones , Ratones Noqueados , Metástasis de la Neoplasia , Transducción de Señal
14.
J Biol Chem ; 293(28): 10963-10974, 2018 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-29789425

RESUMEN

Bone morphogenetic protein 9 (BMP9) and BMP10 are the two high-affinity ligands for the endothelial receptor activin receptor-like kinase 1 (ALK1) and are key regulators of vascular remodeling. They are both present in the blood, but their respective biological activities are still a matter of debate. The aim of the present work was to characterize their circulating forms to better understand how their activities are regulated in vivo First, by cotransfecting BMP9 and BMP10, we found that both can form a disulfide-bonded heterodimer in vitro and that this heterodimer is functional on endothelial cells via ALK1. Next, we developed an ELISA that could specifically recognize the BMP9-BMP10 heterodimer and which indicated its presence in both human and mouse plasma. In addition to using available Bmp9-KO mice, we generated a conditional Bmp10-KO mouse strain. The plasma from Bmp10-KO mice, similarly to that of Bmp9-KO mice, completely lacked the ability to activate ALK1-transfected 3T3 cells or phospho-Smad1-5 on endothelial cells, indicating that the circulating BMP activity is mostly due to the BMP9-BMP10 heterodimeric form. This result was confirmed in human plasma that had undergone affinity chromatography to remove BMP9 homodimer. Finally, we provide evidence that hepatic stellate cells in the liver could be the source of the BMP9-BMP10 heterodimer. Together, our findings demonstrate that BMP9 and BMP10 can heterodimerize and that this heterodimer is responsible for most of the biological BMP activity found in plasma.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Endotelio Vascular/metabolismo , Factor 2 de Diferenciación de Crecimiento/metabolismo , Factores de Diferenciación de Crecimiento/metabolismo , Multimerización de Proteína , Células 3T3 , Animales , Proteínas Morfogenéticas Óseas/sangre , Proteínas Morfogenéticas Óseas/química , Endotelio Vascular/citología , Factor 2 de Diferenciación de Crecimiento/sangre , Factor 2 de Diferenciación de Crecimiento/química , Factores de Diferenciación de Crecimiento/sangre , Factores de Diferenciación de Crecimiento/química , Humanos , Ratones , Ratones Noqueados , Transducción de Señal
15.
Proc Natl Acad Sci U S A ; 112(25): E3207-15, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26056270

RESUMEN

The transition to pulmonary respiration after birth requires rapid alterations in the structure of the mammalian cardiovascular system. One dramatic change that occurs is the closure of the ductus arteriosus (DA), an arterial connection in the fetus that directs blood flow away from the pulmonary circulation. Two members of the TGFß family, bone morphogenetic protein 9 (BMP9) and BMP10, have been recently involved in postnatal angiogenesis, both being necessary for remodeling of newly formed microvascular beds. The aim of the present work was to study whether BMP9 and BMP10 could be involved in closure of the DA. We found that Bmp9 knockout in mice led to an imperfect closure of the DA. Further, addition of a neutralizing anti-BMP10 antibody at postnatal day 1 (P1) and P3 in these pups exacerbated the remodeling defect and led to a reopening of the DA at P4. Transmission electron microscopy images and immunofluorescence stainings suggested that this effect could be due to a defect in intimal cell differentiation from endothelial to mesenchymal cells, associated with a lack of extracellular matrix deposition within the center of the DA. This result was supported by the identification of the regulation by BMP9 and BMP10 of several genes known to be involved in this process. The involvement of these BMPs was further supported by human genomic data because we could define a critical region in chromosome 2 encoding eight genes including BMP10 that correlated with the presence of a patent DA. Together, these data establish roles for BMP9 and BMP10 in DA closure.


Asunto(s)
Proteínas Morfogenéticas Óseas/fisiología , Conducto Arterial/fisiología , Factor 2 de Diferenciación de Crecimiento/fisiología , Animales , Proteínas Morfogenéticas Óseas/genética , Conducto Arterial/patología , Factor 2 de Diferenciación de Crecimiento/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...