Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Front Plant Sci ; 15: 1342662, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38559768

RESUMEN

We previously established the selection-marker-free rice-based oral cholera vaccine (MucoRice-CTB) line 51A for human use by Agrobacterium-mediated co-transformation and conducted a double-blind, randomized, placebo-controlled phase I trial in Japan and the United States. Although MucoRice-CTB 51A was acceptably safe and well tolerated by healthy Japanese and U.S. subjects and induced CTB-specific antibodies neutralizing cholera toxin secreted by Vibrio cholerae, we were limited to a 6-g cohort in the U.S. trial because of insufficient production of MucoRice-CTB. Since MucoRice-CTB 51A did not grow in sunlight, we re-examined the previously established marker-free lines and selected MucoRice-CTB line 19A. Southern blot analysis of line 19A showed a single copy of the CTB gene. We resequenced the whole genome and detected the transgene in an intergenic region in chromosome 1. After establishing a master seed bank of MucoRice-CTB line 19A, we established a hydroponic production facility with LED lighting to reduce electricity consumption and to increase production capacity for clinical trials. Shotgun MS/MS proteomics analysis of MucoRice-CTB 19A showed low levels of α-amylase/trypsin inhibitor-like proteins (major rice allergens), which was consistent with the data for line 51A. We also demonstrated that MucoRice-CTB 19A had high oral immunogenicity and induced protective immunity against cholera toxin challenge in mice. These results indicate that MucoRice-CTB 19A is a suitable oral cholera vaccine candidate for Phase I and II clinical trials in humans, including a V. cholerae challenge study.

3.
Semin Immunopathol ; 45(4-6): 493-507, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38170255

RESUMEN

Glycoprotein 2 (GP2) is a widely distributed protein in the digestive tract, contributing to mucosal barrier maintenance, immune homeostasis, and antigen-specific immune response, while also being linked to inflammatory bowel disease (IBD) pathogenesis. This review sheds light on the extensive distribution of GP2 within the gastrointestinal tract and its intricate interplay with the immune system. Furthermore, the significance of GP2 autoantibodies in diagnosing and categorizing IBD is underscored, alongside the promising therapeutic avenues for modulating GP2 to regulate immunity and maintain mucosal balance.


Asunto(s)
Proteínas Ligadas a GPI , Enfermedades Inflamatorias del Intestino , Mucosa Intestinal , Animales , Humanos , Autoanticuerpos/inmunología , Susceptibilidad a Enfermedades , Proteínas Ligadas a GPI/metabolismo , Proteínas Ligadas a GPI/inmunología , Inmunidad Mucosa , Inflamación/inmunología , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/diagnóstico , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología
4.
NPJ Vaccines ; 8(1): 106, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488116

RESUMEN

Respiratory syncytial virus (RSV) is a leading cause of upper and lower respiratory tract infection, especially in children and the elderly. Various vaccines containing the major transmembrane surface proteins of RSV (proteins F and G) have been tested; however, they have either afforded inadequate protection or are associated with the risk of vaccine-enhanced disease (VED). Recently, F protein-based maternal immunization and vaccines for elderly patients have shown promising results in phase III clinical trials, however, these vaccines have been administered by injection. Here, we examined the potential of using the ectodomain of small hydrophobic protein (SHe), also an RSV transmembrane surface protein, as a nasal vaccine antigen. A vaccine was formulated using our previously developed cationic cholesteryl-group-bearing pullulan nanogel as the delivery system, and SHe was linked in triplicate to pneumococcal surface protein A as a carrier protein. Nasal immunization of mice and cotton rats induced both SHe-specific serum IgG and mucosal IgA antibodies, preventing viral invasion in both the upper and lower respiratory tracts without inducing VED. Moreover, nasal immunization induced greater protective immunity against RSV in the upper respiratory tract than did systemic immunization, suggesting a critical role for mucosal RSV-specific IgA responses in viral elimination at the airway epithelium. Thus, our nasal vaccine induced effective protection against RSV infection in the airway mucosa and is therefore a promising vaccine candidate for further development.

5.
Vaccine ; 41(34): 4941-4949, 2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37385890

RESUMEN

Cationic cholesteryl-group-bearing pullulan nanogel (cCHP-nanogel) is an effective drug-delivery system for nasal vaccines. However, cCHP-nanogel-based nasal vaccines might access the central nervous system due to its close proximity via the olfactory bulb in the nasal cavity. Using real-time quantitative tracking of the nanogel-based nasal botulinum neurotoxin and pneumococcal vaccines, we previously confirmed the lack of deposition of vaccine antigen in the cerebrum or olfactory bulbs of mice and non-human primates (NHPs), rhesus macaques. Here, we used positron emission tomography to investigate the biodistribution of the drug-delivery system itself, cCHP-nanogel after mice and NHPs were nasally administered with 18F-labeled cCHP nanogel. The results generated by the PET analysis of rhesus macaques were consistent with the direct counting of radioactivity due to 18F or 111In in dissected mouse tissues. Thus, no depositions of cCHP-nanogel were noted in the cerebrum, olfactory bulbs, or eyes of both species after nasal administration of the radiolabeled cCHP-nanogel compound. Our findings confirm the safe biodistribution of the cCHP-nanogel-based nasal vaccine delivery system in mice and NHPs.


Asunto(s)
Sistemas de Liberación de Medicamentos , Vacunas Neumococicas , Animales , Nanogeles , Macaca mulatta , Distribución Tisular , Administración Intranasal
6.
Trends Mol Med ; 29(2): 124-140, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36435633

RESUMEN

Nasal vaccines induce pathogen-specific dual protective immunity at mucosal surfaces and systemically throughout the body. Consequently, nasal vaccines both prevent pathogen invasion and reduce disease severity. Because of these features, nasal vaccines are considered to be a next-generation tool for preventing respiratory infectious diseases, including COVID-19. However, nasal vaccines must overcome key safety concerns given the anatomic proximity of the central nervous system (CNS) via the olfactory bulbs which lie next to the nasal cavity. This review summarizes current efforts to develop safe and effective nasal vaccines and delivery systems, as well as their clinical applications for the prevention of respiratory infections. We also discuss various concerns regarding the safety of nasal vaccines and introduce a system for evaluating them.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Infecciones del Sistema Respiratorio , Vacunas , Humanos , Administración Intranasal , COVID-19/prevención & control , Infecciones del Sistema Respiratorio/prevención & control , Inmunidad Mucosa
7.
Front Immunol ; 13: 819859, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874779

RESUMEN

Nontypeable Haemophilus influenzae (NTHi) strains form a major group of pathogenic bacteria that colonizes the nasopharynx and causes otitis media in young children. At present, there is no licensed vaccine for NTHi. Because NTHi colonizes the upper respiratory tract and forms biofilms that cause subsequent infectious events, a nasal vaccine that induces NTHi-specific secretory IgA capable of preventing biofilm formation in the respiratory tract is desirable. Here, we developed a cationic cholesteryl pullulan-based (cCHP nanogel) nasal vaccine containing the NTHi surface antigen P6 (cCHP-P6) as a universal vaccine antigen, because P6 expression is conserved among 90% of NTHi strains. Nasal immunization of mice with cCHP-P6 effectively induced P6-specific IgA in mucosal fluids, including nasal and middle ear washes. The vaccine-induced P6-specific IgA showed direct binding to the NTHi via the surface P6 proteins, resulting in the inhibition of NTHi biofilm formation. cCHP-P6 nasal vaccine thus protected mice from intranasal NTHi challenge by reducing NTHi colonization of nasal tissues and eventually eliminated the bacteria. In addition, the vaccine-induced IgA bound to different NTHi clinical isolates from patients with otitis media and inhibited NTHi attachment in a three-dimensional in vitro model of the human nasal epithelial surface. Therefore, the cCHP-P6 nanogel nasal vaccine induced effective protection in the airway mucosa, making it a strong vaccine candidate for preventing NTHi-induced infectious diseases, such as otitis media, sinusitis, and pneumonia.


Asunto(s)
Infecciones por Haemophilus , Vacunas contra Haemophilus , Otitis Media , Animales , Anticuerpos Antibacterianos , Proteínas de la Membrana Bacteriana Externa , Niño , Preescolar , Haemophilus influenzae , Humanos , Inmunoglobulina A , Ratones , Ratones Endogámicos BALB C , Nanogeles , Otitis Media/prevención & control
8.
Vaccine ; 40(24): 3372-3379, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35484039

RESUMEN

MucoRice-CTB is a promising cold-chain-free oral cholera vaccine candidate. Here, we report a double-blind, randomized, placebo-controlled, phase I study conducted in the USA in which vaccination with the 6-g dose of MucoRice-CTB induced cross-reactive antigen-specific antibodies against the B subunit of cholera toxin (CTB) and enterotoxigenic Escherichia coli heat-labile enterotoxin without inducing serious adverse events. This dosage was acceptably safe and tolerable in healthy men and women. In addition, it induced a CTB-specific IgA response in the saliva of two of the nine treated subjects; in one subject, the immunological kinetics of the salivary IgA were similar to those of the serum CTB-specific IgA. Antibodies from three of the five responders to the vaccine prevented CTB from binding its GM1 ganglioside receptor. These results are consistent with those of the phase I study in Japan, suggesting that oral MucoRice-CTB induces neutralizing antibodies against diarrheal toxins regardless of ethnicity.


Asunto(s)
Vacunas contra el Cólera , Escherichia coli Enterotoxigénica , Oryza , Administración Oral , Toxina del Cólera , Femenino , Humanos , Inmunoglobulina A , Masculino , Oryza/metabolismo
9.
Int Immunol ; 33(12): 767-774, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34436595

RESUMEN

The oral and nasal cavities are covered by the mucosal epithelium that starts at the beginning of the aero-digestive tract. These mucosal surfaces are continuously exposed to environmental antigens including pathogens and allergens and are thus equipped with a mucosal immune system that mediates initial recognition of pathogenicity and initiates pathogen-specific immune responses. At the dawn of our scientific effort to explore the mucosal immune system, dental science was one of the major driving forces as it provided insights into the importance of mucosal immunity and its application for the control of oral infectious diseases. The development of mucosal vaccines for the prevention of dental caries was thus part of a novel approach that contributed to building the scientific foundations of the mucosal immune system. Since then, mucosal immunology and vaccines have gone on a scientific journey to become one of the major entities within the discipline of immunology. Here, we introduce our past and current efforts and future directions for the development of mucosal vaccines, specifically a rice-based oral vaccine (MucoRice) and a nanogel-based nasal vaccine, with the aim of preventing and controlling gastrointestinal and respiratory infectious diseases using the interdisciplinary fusion of mucosal immunology with agricultural science and biomaterial engineering, respectively.


Asunto(s)
Enfermedades Transmisibles/inmunología , Inmunidad Mucosa/inmunología , Vacunas/inmunología
10.
Vaccine ; 39(25): 3353-3364, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34016473

RESUMEN

Current polysaccharide-based pneumococcal vaccines are effective but not compatible with all serotypes of Streptococcus pneumoniae. We previously developed an adjuvant-free cationic nanogel nasal vaccine containing pneumococcal surface protein A (PspA), which is expressed on the surfaces of all pneumococcal serotypes. Here, to address the sequence diversity of PspA proteins, we formulated a cationic nanogel-based trivalent pneumococcal nasal vaccine and demonstrated the vaccine's immunogenicity and protective efficacy in macaques by using a newly developed nasal spray device applicable to humans. Nasal vaccination of macaques with cationic cholesteryl pullulan nanogel (cCHP)-trivalent PspA vaccine effectively induced PspA-specific IgGs that bound to pneumococcal surfaces and triggered complement C3 deposition. The immunized macaques were protected from pneumococcal intratracheal challenge through both inhibition of lung inflammation and a dramatic reduction in the numbers of bacteria in the lungs. These results demonstrated that the cCHP-trivalent PspA vaccine is an effective candidate vaccine against pneumococcal infections.


Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Animales , Anticuerpos Antibacterianos , Proteínas Bacterianas , Humanos , Macaca , Ratones , Ratones Endogámicos BALB C , Nanogeles , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas
11.
Front Plant Sci ; 12: 639953, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868338

RESUMEN

Human norovirus is the leading cause of acute nonbacterial gastroenteritis in people of all ages worldwide. Currently, no licensed norovirus vaccine, pharmaceutical drug, or therapy is available for the control of norovirus infection. Here, we used a rice transgenic system, MucoRice, to produce a variable domain of a llama heavy-chain antibody fragment (VHH) specific for human norovirus (MucoRice-VHH). VHH is a small heat- and acid-stable protein that resembles a monoclonal antibody. Consequently, VHHs have become attractive and useful antibodies (Abs) for oral immunotherapy against intestinal infectious diseases. MucoRice-VHH constructs were generated at high yields in rice seeds by using an overexpression system with RNA interference to suppress the production of the major rice endogenous storage proteins. The average production levels of monomeric VHH (7C6) to GII.4 norovirus and heterodimeric VHH (7C6-1E4) to GII.4 and GII.17 noroviruses in rice seed were 0.54 and 0.28% (w/w), respectively, as phosphate buffered saline (PBS)-soluble VHHs. By using a human norovirus propagation system in human induced pluripotent stem-cell-derived intestinal epithelial cells (IECs), we demonstrated the high neutralizing activity of MucoRice expressing monomeric VHH (7C6) against GII.4 norovirus and of heterodimeric VHH (7C6-1E4) against both GII.4 and GII.17 noroviruses. In addition, MucoRice-VHH (7C6-1E4) retained neutralizing activity even after heat treatment at 90°C for 20 min. These results build a fundamental platform for the continued development of MucoRice-VHH heterodimer as a candidate for oral immunotherapy and for prophylaxis against GII.4 and GII.17 noroviruses in not only healthy adults and children but also immunocompromised patients and the elderly.

12.
Mol Pharm ; 18(4): 1582-1592, 2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33621107

RESUMEN

We previously developed a safe and effective nasal vaccine delivery system using a self-assembled nanosized hydrogel (nanogel) made from a cationic cholesteryl pullulan. Here, we generated three pneumococcal surface protein A (PspA) fusion antigens as a universal pneumococcal nasal vaccine and then encapsulated each PspA into a nanogel and mixed the three resulting monovalent formulations into a trivalent nanogel-PspA formulation. First, to characterize the nanogel-PspA formulations, we used native polyacrylamide gel electrophoresis (PAGE) to determine the average number of PspA molecules encapsulated per nanogel molecule. Second, we adopted two methods-a densitometric method based on lithium dodecyl sulfate (LDS)-PAGE and a biologic method involving sandwich enzyme-linked immunosorbent assay (ELISA)-to determine the PspA content in the nanogel formulations. Third, treatment of nanogel-PspA formulations by adding methyl-ß-cyclodextrin released each PspA in its native form, as confirmed through circular dichroism (CD) spectroscopy. However, when nanogel-PspA formulations were heat-treated at 80 °C for 16 h, CD spectroscopy showed that each PspA was released in a denatured form. Fourth, we confirmed that the nanogel-PspA formulations were internalized into nasal mucosa effectively and that each PspA was gradually released from the nanogel in epithelial cells in mice. Fifth, LDS-PAGE densitometry and ELISA both indicated that the amount of trivalent PspA was dramatically decreased in the heat-treated nanogel compared with that before heating. When mice were immunized nasally using the heat-treated formulation, the immunologic activity of each PspA was dramatically reduced compared with that of the untreated formulation; in both cases, the immunologic activity correlated well with the content of each PspA as determined by LDS-PAGE densitometry and ELISA. Finally, we confirmed that the trivalent nanogel-PspA formulation induced equivalent titers of PspA-specific serum IgG and mucosal IgA Abs in immunized mice. These results show that the specification methods we developed effectively characterized our nanogel-based trivalent PspA nasal vaccine formulation.


Asunto(s)
Proteínas Bacterianas/administración & dosificación , Higroscópicos/química , Nanogeles/química , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas/administración & dosificación , Administración Intranasal , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/farmacocinética , Liberación de Fármacos , Femenino , Glucanos/química , Humanos , Inmunogenicidad Vacunal , Ratones , Modelos Animales , Mucosa Nasal/metabolismo , Infecciones Neumocócicas/microbiología , Vacunas Neumococicas/genética , Vacunas Neumococicas/inmunología , Vacunas Neumococicas/farmacocinética , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/inmunología , beta-Ciclodextrinas/química
13.
Lancet Microbe ; 2(9): e429-e440, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-35544149

RESUMEN

BACKGROUND: There are an estimated 1·3-4·0 million cases of cholera and 20 000-140 000 cholera-related deaths worldwide each year. The rice-based cholera toxin B subunit (CTB) vaccine, MucoRice-CTB, is an oral candidate vaccine that does not require a cold chain, has shown efficacy in animal models, and could be of benefit in places where there is a paucity of medical infrastructure. We aim to assess the safety, tolerability, and immunogenicity of MucoRice-CTB in humans. METHODS: We did a double-blind, randomised, placebo-controlled, dose-escalation, phase 1 study at one centre in Tokyo, Japan. Eligible participants were healthy adult men with measurable serum and faecal antibodies against CTB at screening. Participants were excluded if they had allergy to rice; history of cholera or travellers' diarrhoea; poorly controlled constipation; abnormal results on hepatic, renal, or haematological screening tests; use of any over-the-counter drugs within 7 days before first administration; inability to use a medically acceptable means of contraception; or other reasons by medical judgment of the investigator. Three dose cohorts of participants were randomly assigned by block to receive oral MucoRice-CTB (1 g, 3 g, or 6 g) or placebo (1 g, 3 g, or 6 g), once every 2 weeks for 8 weeks (for a total of 4 doses). The dose groups were performed sequentially, and each dose cohort was completed before the higher dose cohort began. All medical staff, participants, and most trial staff were masked to treatment allocation. The primary outcomes were safety and tolerability, measured by 12-lead electrocardiogram; vital signs; haematology, biochemistry, and urinalysis; rice protein-specific serum IgE antibody concentration; and monitoring of adverse events. Participants were assessed at baseline and at 1, 2, 4, 6, 8, and 16 weeks after the first administration of vaccine or placebo. The safety analysis set included all participants enrolled in the trial who received at least one dose of the study drug or placebo and were compliant with good clinical practice. The full analysis population included all participants enrolled in the trial who received at least one dose of the study drug and for whom any data were obtained after the start of study drug administration. Meta-genomic analysis of study participants was performed using bacterial DNA from faecal samples before vaccination. This trial is registered with UMIN.ac.jp, UMIN000018001. FINDINGS: Between June 23, 2015, and May 31, 2016, 226 participants were recruited and assessed for eligibility. 166 participants were excluded based on health condition or schedule. We then randomly selected 60 male volunteers aged 20-40 years who were enrolled and assigned to MucoRice-CTB (10 participants assigned to 1 g, 10 participants assigned to 3 g, and 10 participants assigned to 6 g), or placebo (10 participants assigned to 1 g, 10 participants assigned to 3 g, and 10 participants assigned to 6 g). All participants received at least one dose of study drug or placebo and were included in the safety analyses. Two participants given MucoRice-CTB 3 g and one participant given MucoRice-CTB 6 g were lost to follow-up and excluded from the efficacy analysis. Serum CTB-specific IgG and IgA antibody concentrations in participants who received 6 g MucoRice-CTB increased significantly in both a time-dependent and dose-dependent manner compared with those in the placebo groups (p for interaction=0·002 for IgG, p=0·004 for IgA). Genome analysis of subjects' faeces before vaccination revealed that compared to non-responders, responders had a gut microbiota of higher diversity with the presence of Escherichia coli and Shigella spp. 28 (93%) of 30 participants who received MucoRice-CTB at any dose had at least one adverse event during the study period, compared with 30 (100%) of 30 participants given placebo. Grade 3 or higher adverse events were reported in four participants in the MucoRice-CTB group (5 events) and four participants in the placebo group (10 events). The most common serious adverse event was haemoglobin decreased (2 events in 2 participants in the pooled MucoRice-CTB group, 2 events in 2 participants in the placebo group; all grade 3). INTERPRETATION: Participants given MucoRice-CTB showed increased CTB-specific serum IgG and IgA antibody concentrations without inducing serious adverse events, indicating that MucoRice-CTB could be a safe and potent vaccine to prevent diarrhoeal disease. MucoRice-CTB induced neutralising antibodies against diarrhoeal toxins in a gut microbiota-dependent manner. A similar phase 1 trial will be done with participants of other ethnicities to substantiate our findings. FUNDING: Translational Research Acceleration Network Program of Japan Agency for Medical Research and Development; Ministry of Education, Culture, Sports, Science and Technology, Japan; Science and Technology Research Partnership for Sustainable Development; Grant-in-Aid for Scientific Research (S) (18H05280) (to H K) from the Japan Society for the Promotion of Science (JSPS); Grant-in-Aid for Young Scientists (B) (16K16144) (to Y K) from JSPS; Grant-in-Aid for Young Scientists (18K18148) (to Y K) from JSPS; Grant from International Joint Usage/Research Center (K3002), the Institute of Medical Science, University of Tokyo.


Asunto(s)
COVID-19 , Cólera , Microbiota , Vacunas , Animales , Vacunas contra la COVID-19 , Diarrea , Humanos , Inmunogenicidad Vacunal , Inmunoglobulina A , Inmunoglobulina G , Masculino , SARS-CoV-2
14.
Int Immunol ; 32(1): 17-26, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31412363

RESUMEN

B-cell novel protein 1 (BCNP1) has recently been identified as a new B-cell receptor (BCR) signaling molecule but its physiological function remains unknown. Here, we demonstrate that mice deficient in BCNP1 exhibit impaired B-cell maturation and a reduction of B-1a cells. BCNP1-deficient spleen B cells show enhanced survival, proliferation and Ca2+ influx in response to BCR cross-linking as compared with wild-type spleen B cells. Consistently, mutant B cells show elevated phosphorylation of SYK, B-cell linker protein (BLNK) and PLCγ2 upon BCR cross-linking. In vivo, BCNP1-deficient mice exhibit enhanced humoral immune responses to T-independent and T-dependent antigens. Moreover, aged mutant mice contain elevated levels of serum IgM and IgG3 antibodies and exhibit polyclonal and monoclonal B-cell expansion in lymphoid organs. These results reveal distinct roles for BCNP1 in B-cell development, activation and homeostasis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Linfocitos B/inmunología , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
15.
Neurosci Res ; 161: 59-67, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31863791

RESUMEN

Autism spectrum disorder (ASD) is a complex and heterogeneous neurodevelopmental disorder. In addition to the core symptoms of ASD, many patients with ASD also show comorbid gut dysbiosis, which may lead to various gastrointestinal (GI) problems. Intriguingly, there is evidence that gut microbiota communicate with the central nervous system to modulate behavioral output through the gut-brain axis. To investigate how the microbiota composition is changed in ASD and to identify which microbes are involved in autistic behaviors, we performed a 16S rRNA gene-based metagenomics analysis in an ASD mouse model. Here, we focused on a model with human 15q11-13 duplication (15q dup), the most frequent chromosomal aberration or copy number variation found in ASD. Species diversity of the microbiome was significantly decreased in 15q dup mice. A combination of antibiotics treatment and behavioral analysis showed that neomycin improved social communication in 15q dup mice. Furthermore, comparison of the microbiota composition of mice treated with different antibiotics enabled us to identify beneficial operational taxonomic units (OTUs) for ultrasonic vocalization.


Asunto(s)
Trastorno del Espectro Autista , Microbiota , Animales , Comunicación , Variaciones en el Número de Copia de ADN , Humanos , Ratones , ARN Ribosómico 16S/genética
16.
Mucosal Immunol ; 12(6): 1391-1403, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31551493

RESUMEN

Our current study focused on elucidating the role of specific chemokine-receptor interactions in antigen (Ag)-specific immune cell migration from nasal to genital mucosal tissues. This cellular migration is critical to induce effective Ag-specific immune responses against sexually transmitted genital infections. In this study, nasal immunization with live attenuated HSV-2 TK- induced the upregulation of CCR5 expression in effector immune cells, including CD4+ T cells, in Ag-priming sites and vaginal tissue. The CCR5 ligands CCL3, CCL4, and CCL5 all showed upregulated expression in vaginal tissue; in particular, CCL5 expression was highly enhanced in the stromal cells of vaginal tissue after nasal immunization. Intravaginal blockade of CCL5 by using neutralizing antibody diminished the number of HSV-2-specific effector cells in the vagina. Furthermore, loss of CCR5, a receptor for CCL5, impaired the migration of nasally primed Ag-specific effector cells from the airway to vagina. Effector cells adoptively transferred from CCR5-deficient mice failed to migrate into vaginal tissue, consequently increasing recipient mice's susceptibility to HSV-2 vaginal infection. These results indicate that the CCR5-CCL5 chemokine pathway is required for the migration and retention of nasally primed Ag-specific effector cells in vagina for providing protective immunity against HSV-2 infection.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Quimiocina CCL5/metabolismo , Herpes Genital/prevención & control , Herpesvirus Humano 2/patogenicidad , Inmunidad Mucosa , Membrana Mucosa/virología , Receptores CCR5/metabolismo , Vagina/virología , Vacunas Virales/administración & dosificación , Administración Intranasal , Traslado Adoptivo , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/trasplante , Linfocitos T CD4-Positivos/virología , Células Cultivadas , Quimiotaxis de Leucocito , Modelos Animales de Enfermedad , Femenino , Herpes Genital/inmunología , Herpes Genital/metabolismo , Herpes Genital/virología , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/inmunología , Inmunización , Ratones Endogámicos C57BL , Ratones Noqueados , Membrana Mucosa/inmunología , Membrana Mucosa/metabolismo , Receptores CCR5/deficiencia , Receptores CCR5/genética , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Transducción de Señal , Vacunas Atenuadas/administración & dosificación , Vagina/inmunología , Vagina/metabolismo , Virulencia
17.
Eur J Immunol ; 49(6): 911-917, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30888050

RESUMEN

The BCR plays a central role in B cell development, survival, activation, and differentiation. We have identified the B cell novel protein 1 (BCNP1) as a new regulator of BCR signaling. BCNP1 contains a pleckstrin homology domain, three proline-rich motifs, and a potential SH2 binding site, and is predominantly expressed by B cells. We found that BCNP1 overexpression in WEHI231 immature B cells potentiated α-IgM-induced apoptosis. Conversely, BCNP1-deficient WEHI231 cells, generated by CRISPR-Cas9-mediated genome editing, exhibited reduced apoptosis after BCR crosslinking. Biochemical analyses revealed that BCNP1 physically interacted with the B cell linker protein (BLNK), Grb2, and PLCγ2. Moreover, absence of BCNP1 resulted in accelerated dephosphorylation of BLNK, reduced phosphorylation of SYK and PLCγ2, and decreased Ca2+ influx after BCR crosslinking. These results demonstrate that BCNP1 promotes BCR signaling by modulating the phosphorylation of BLNK, SYK, and PLCγ2.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/inmunología , Apoptosis/inmunología , Linfocitos B/inmunología , Receptores de Antígenos de Linfocitos B/inmunología , Transducción de Señal/inmunología , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Linfocitos B/metabolismo , Línea Celular , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Ratones , Receptores de Antígenos de Linfocitos B/metabolismo
18.
Hum Vaccin Immunother ; 14(9): 2189-2193, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29624474

RESUMEN

The mucosal surfaces of the respiratory and gastrointestinal tracts are continuously exposed to countless beneficial and pathologic antigens. These mucosal surfaces are thus equipped with an immune system that is unique from those elsewhere in the body; this unique system provides the first line of immune surveillance and defense against pathogen invasion. The sophisticated immune induction machinery in the aero-digestive tract involves mucosa-associated lymphoid tissues, including nasopharyngeal- and gut-associated lymphoid tissues, for the generation of antigen-specific humoral and cellular immune responses. Consequently, nasal or oral immunization with an appropriate vaccine delivery vehicle prompts the induction of protective immunity in both the mucosal and systemic compartments, leading to a double layer of protection against pathogens. To harness the benefits of mucosal vaccines, various mucosal antigen delivery vehicles are under development, and a cationic cholesteryl-group-bearing pullulan nanogel (cCHP nanogel) has emerged as a potent nasal vaccine delivery system for the induction of protective immunity against respiratory infections.


Asunto(s)
Portadores de Fármacos/administración & dosificación , Glucanos/administración & dosificación , Polietilenglicoles/administración & dosificación , Polietileneimina/administración & dosificación , Infecciones del Sistema Respiratorio/prevención & control , Vacunas/administración & dosificación , Administración Intranasal , Portadores de Fármacos/efectos adversos , Glucanos/efectos adversos , Humanos , Nanogeles , Polietilenglicoles/efectos adversos , Polietileneimina/efectos adversos , Vacunas/efectos adversos
19.
Expert Rev Vaccines ; 16(12): 1231-1240, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29053938

RESUMEN

INTRODUCTION: Nasal vaccination is one of the most effective immunization methods because it can induce effective antigen-specific immune responses not only at the mucosal site of administration but also at distant mucosal surfaces, as well as in the systemic compartment. Based on this advantage, many nasal vaccines are being developed and some have been licensed and marketed for clinical use. However, some have been withdrawn because of unacceptable adverse events such as inactivated influenza vaccine administrated with a heat-labile enterotoxin of Escherichia coli as an adjuvant. Thus, it is important to consider both the efficacy and safety of nasal vaccines. Areas covered: This review describes the benefits of cholesteryl group-bearing pullulan (CHP) nanogels for nasal vaccine delivery and vaccine development identified on Pubmed database with the term 'Nanogel-based nasal vaccine'. Expert commentary: CHP nanogels have been developed as novel drug delivery system, and a cationic CHP nanogels have been demonstrated to induce effective immunity as a nasal vaccine antigen carrier. Since vaccine antigens incorporated into CHP nanogels have exhibited no brain deposition after nasal administration in mice and nonhuman primates, the vaccine seems safe, and could be a promising new delivery system.


Asunto(s)
Sistemas de Liberación de Medicamentos , Polietilenglicoles/administración & dosificación , Polietilenglicoles/efectos adversos , Polietileneimina/administración & dosificación , Polietileneimina/efectos adversos , Vacunas/efectos adversos , Vacunas/inmunología , Administración Intranasal , Animales , Evaluación Preclínica de Medicamentos , Ratones , Nanogeles , Primates , Vacunas/administración & dosificación
20.
J Immunol ; 194(7): 3096-101, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25732732

RESUMEN

The IgM FcR (FcµR) promotes B cell survival, but the molecular mechanism remains largely unknown. We show using FcµR(-/-) and wild-type mice that FcµR specifically enhanced B cell survival induced by BCR cross-linking with F(ab')2-anti-IgM Abs while having no effect on survival when the B cells were activated by CD40 ligation or LPS stimulation. FcµR expression was markedly upregulated by anti-IgM stimulation, which may promote enhanced FcµR signaling in these cells. Immunofluorescence and confocal microscopy analyses demonstrated that FcµR colocalized with the BCR on the plasma membrane of primary B cells. Coimmunoprecipitation analysis further revealed that FcµR physically interacted with the BCR complex. Because NF-κB plays a prominent role in B cell survival, we analyzed whether FcµR was involved in BCR-triggered NF-κB activation. FcµR did not affect BCR-triggered IκBα phosphorylation characteristic of the canonical NF-κB activation pathway but promoted the production of the noncanonical NF-κB pathway component p52. Consistent with the elevated p52 levels, FcµR enhanced BCR-triggered expression of the antiapoptotic protein BCL-xL. Importantly, FcµR stimulation alone in the absence of BCR signaling had no effect on either IκBα phosphorylation or the expression of p52 and BCL-xL. Therefore, FcµR relied on the BCR signal to activate the noncanonical NF-κB pathway and enhance B cell survival. These results reveal a cross-talk downstream of FcµR and BCR signaling and provide mechanistic insight into FcµR-mediated enhancement of B cell survival after BCR stimulation.


Asunto(s)
Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores Fc/metabolismo , Animales , Anticuerpos Antiidiotipos/farmacología , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica , Activación de Linfocitos , Ratones , Ratones Noqueados , Subunidad p52 de NF-kappa B/genética , Subunidad p52 de NF-kappa B/metabolismo , Unión Proteica , Receptores Fc/deficiencia , Receptores Fc/genética , Bazo/inmunología , Bazo/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...