Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37961179

RESUMEN

Expansion microscopy and light sheet imaging enable fine-scale resolution of intracellular features that comprise neural circuits. Most current techniques visualize sparsely distributed features across whole brains or densely distributed features within individual brain regions. Here, we visualize dense distributions of immunolabeled proteins across early visual cortical areas in adult macaque monkeys. This process may be combined with multiphoton or magnetic resonance imaging to produce multimodal atlases in large, gyrencephalic brains.

2.
bioRxiv ; 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37425699

RESUMEN

Recent advances in tissue processing, labeling, and fluorescence microscopy are providing unprecedented views of the structure of cells and tissues at sub-diffraction resolutions and near single molecule sensitivity, driving discoveries in diverse fields of biology, including neuroscience. Biological tissue is organized over scales of nanometers to centimeters. Harnessing molecular imaging across three-dimensional samples on this scale requires new types of microscopes with larger fields of view and working distance, as well as higher imaging throughput. We present a new expansion-assisted selective plane illumination microscope (ExA-SPIM) with diffraction-limited and aberration-free performance over a large field of view (85 mm 2 ) and working distance (35 mm). Combined with new tissue clearing and expansion methods, the microscope allows nanoscale imaging of centimeter-scale samples, including entire mouse brains, with diffraction-limited resolutions and high contrast without sectioning. We illustrate ExA-SPIM by reconstructing individual neurons across the mouse brain, imaging cortico-spinal neurons in the macaque motor cortex, and tracing axons in human white matter.

3.
STAR Protoc ; 3(2): 101405, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35620069

RESUMEN

Co-registration of neuronal structures between in vivo and ex vivo imaging is necessary to study structure-function correspondence in the mammalian brain. Here we describe a protocol based on tangential sectioning of the mouse brain. This protocol aligns in vivo two-photon calcium imaging volumes with ex vivo confocal imaging volumes and registers the same cortical structures in both volumes. This approach allows detailed analysis of the corresponding function and structure of these entities. For complete details on the use and execution of this protocol, please refer to Zhuang et al. (2021).


Asunto(s)
Encéfalo , Técnicas Histológicas , Animales , Encéfalo/diagnóstico por imagen , Mamíferos , Ratones , Neuronas , Fotones
4.
Cell Rep ; 37(2): 109826, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34644562

RESUMEN

Motion/direction-sensitive and location-sensitive neurons are the two major functional types in mouse visual thalamus that project to the primary visual cortex (V1). It is under debate whether motion/direction-sensitive inputs preferentially target the superficial layers in V1, as opposed to the location-sensitive inputs, which preferentially target the middle layers. Here, by using calcium imaging to measure the activity of motion/direction-sensitive and location-sensitive axons in V1, we find evidence against these cell-type-specific laminar biases at the population level. Furthermore, using an approach to reconstruct axon arbors with identified in vivo response types, we show that, at the single-axon level, the motion/direction-sensitive axons project more densely to the middle layers than the location-sensitive axons. Overall, our results demonstrate that motion/direction-sensitive thalamic neurons project extensively to the middle layers of V1 at both the population and single-cell levels, providing further insight into the organization of thalamocortical projection in the mouse visual system.


Asunto(s)
Axones/fisiología , Percepción de Movimiento , Orientación , Corteza Visual Primaria/fisiología , Tálamo/fisiología , Animales , Señalización del Calcio , Femenino , Masculino , Ratones Transgénicos , Microscopía Confocal , Microscopía de Fluorescencia por Excitación Multifotónica , Estimulación Luminosa , Corteza Visual Primaria/citología , Tálamo/citología , Vías Visuales/citología , Vías Visuales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...