Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Planta ; 255(2): 40, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35038036

RESUMEN

MAIN CONCLUSION: QTL hotspots identified for selected source-sink-related traits provide the opportunity for pyramiding favorable alleles for improving sorghum productivity under diverse environments. A sorghum bi-parental mapping population was evaluated under six different environments at Hays and Manhattan, Kansas, USA, in 2016 and 2017, to identify genomic regions controlling source-sink relationships. The population consisted of 210 recombinant inbred lines developed from US elite post-flowering drought susceptible (RTx430) and a known post-flowering drought tolerant cultivar (SC35). Selected physiological traits related to source (effective quantum yield of photosystem II and chlorophyll index), sink (grain yield per panicle) and panicle neck diameter were recorded during grain filling. The results showed strong phenotypic and genotypic association between panicle neck diameter and grain yield per panicle during mid-grain filling and at maturity. Multiple QTL model revealed 5-12 including 2-5 major QTL for each trait. Among them 3, 7 and 8 QTL for quantum yield, panicle neck diameter and chlorophyll index, respectively, have not been identified previously in sorghum. Phenotypic variation explained by QTL identified across target traits ranged between 5.5 and 25.4%. Panicle neck diameter and grain yield per panicle were positively associated, indicating the possibility of targeting common co-localized QTL to improve both traits simultaneously through marker-assisted selection. Three major QTL hotspots, controlling multiple traits were identified on chromosome 1 (52.23-61.18 Mb), 2 (2.52-11.43 Mb) and 3 (1.32-3.95 Mb). The identified genomic regions and underlying candidate genes can be utilized in pyramiding favorable alleles for improving source-sink relationships in sorghum under diverse environments.


Asunto(s)
Sorghum , Mapeo Cromosómico , Grano Comestible/genética , Fenotipo , Sitios de Carácter Cuantitativo/genética , Sorghum/genética
2.
Ticks Tick Borne Dis ; 12(6): 101800, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34352531

RESUMEN

Lyme borreliosis is a zoonotic tick-borne infection representing the most frequent vector-borne disease in the northern hemisphere. The Mediterranean rim is generally described as unsuitable for the European vector, Ixodes ricinus. We conducted an epidemiological study to assess whether I. ricinus was present and study its infection status for tick-borne bacteria. Ticks originating from southeastern France were obtained from flagging sampling and removed from animals and tick-bitten patients. Species level identification used morphological keys and MALDI-TOF MS. Quantitative PCR and sequencing assays were used to detect and identify tick-associated bacteria (Borrelia, Rickettsia, Anaplasmataceae, Bartonella, Coxiella burnetii) in each specimen. A total of 1232 ticks were collected in several localities. Among these, 863 were identified as I. ricinus (70%). Bacterial screening allowed identification of Lyme group Borrelia among I. ricinus ticks originating from various regional areas. Other emerging tick-borne pathogens like Borrelia miyamotoi and Rickettsia species were also detected. The Alpes-Maritimes region, part of the French Riviera, harbours I. ricinus ticks infected with Lyme group Borrelia and several other tick-borne bacterial agents. Clinicians and outdoor activity participants should be aware of the local Lyme borreliosis transmission risk.


Asunto(s)
Distribución Animal , Enfermedades Transmisibles Emergentes/epidemiología , Ixodes , Enfermedades por Picaduras de Garrapatas/epidemiología , Animales , Enfermedades Transmisibles Emergentes/microbiología , Enfermedades Transmisibles Emergentes/parasitología , Enfermedades Transmisibles Emergentes/virología , Francia/epidemiología , Ixodes/microbiología , Ixodes/parasitología , Ixodes/fisiología , Ixodes/virología , Enfermedades por Picaduras de Garrapatas/microbiología , Enfermedades por Picaduras de Garrapatas/parasitología , Enfermedades por Picaduras de Garrapatas/virología
3.
Emerg Infect Dis ; 27(7): 1940-1943, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34152950

RESUMEN

We report patients in their homes in France who had cutaneous lesions caused by Anthrenus sp. larvae during the end of winter and into spring. These lesions mimic bites but are allergic reactions to larvae hairs pegged in the skin. These lesions should be distinguished from bites of bed bugs or fleas.


Asunto(s)
Escarabajos , Dermatitis , Mordeduras y Picaduras de Insectos , Siphonaptera , Animales , Francia , Humanos , Piel
4.
Plant Cell Environ ; 43(2): 448-462, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31702833

RESUMEN

In sorghum (Sorghum bicolor [L.] Moench), the impact of heat stress during flowering on seed set is known, but mechanisms that lead to tolerance are not known. A diverse set of sorghum genotypes was tested under controlled environment and field conditions to ascertain the impact of heat stress on time-of-day of flowering, pollen viability, and ovarian tissue. A highly conserved early morning flowering was observed, wherein >90% of spikelets completed flowering within 30 min after dawn, both in inbreds and hybrids. A strong quantitative impact of heat stress was recorded before pollination (reduced pollen viability) and post pollination (reduced pollen tube growth and linear decline in fertility). Although viable pollen tube did reach the micropylar region, 100% spikelet sterility was recorded under 40/22°C (day/night temperatures), even in the tolerant genotype Macia. Heat stress induced significant damage to the ovarian tissue near the micropylar region, leading to highly condensed cytoplasmic contents and disintegrated nucleolus and nucleus in the susceptible genotype RTx430. Whereas, relatively less damages to ovarian cell organelles were observed in the tolerant genotype Macia under heat stress. Integrating higher tolerance in female reproductive organ will help in effective utilization of the early morning flowering mechanism to enhance sorghum productivity under current and future hotter climate.


Asunto(s)
Fertilidad/fisiología , Respuesta al Choque Térmico/fisiología , Calor/efectos adversos , Infertilidad , Sorghum/fisiología , Clima , Grano Comestible/fisiología , Genotipo , Magnoliopsida/fisiología , Proteínas del Complejo del Centro de Reacción Fotosintética , Polen/fisiología , Tubo Polínico/crecimiento & desarrollo , Polinización/fisiología , Reproducción/fisiología , Sorghum/genética , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...