Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 917: 170457, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38307278

RESUMEN

Mercury (Hg) is naturally released by volcanoes and geothermal systems, but the global flux from these natural sources is highly uncertain due to a lack of direct measurements and uncertainties with upscaling Hg/SO2 mass ratios to estimate Hg fluxes. The 2021 and 2022 eruptions of Fagradalsfjall volcano, southwest Iceland, provided an opportunity to measure Hg concentrations and fluxes from a hotspot/rift system using modern analytical techniques. We measured gaseous Hg and SO2 concentrations in the volcanic plume by near-source drone-based sampling and simultaneous downwind ground-based sampling. Mean Hg/SO2 was an order of magnitude higher at the downwind locations relative to near-source data. This was attributed to the elevated local background Hg at ground level (4.0 ng m-3) likely due to emissions from outgassing lava fields. The background-corrected plume Hg/SO2 mass ratio (5.6 × 10-8) therefore appeared conservative from the near-source to several hundred meters distant, which has important implications for the upscaling of volcanic Hg fluxes based on SO2 measurements. Using this ratio and the total SO2 flux from both eruptions, we estimate the total mass of gaseous Hg released from the 2021 and 2022 Fagradalsfjall eruptions was 46 ± 33 kg, equivalent to a flux of 0.23 ± 0.17 kg d-1. This is the lowest Hg flux estimate in the literature for active open-conduit volcanoes, which range from 0.6 to 12 kg d-1 for other hotspot/rift volcanoes, and 0.5-110 kg d-1 for arc volcanoes. Our results suggest that Icelandic volcanic systems are fed from an especially Hg-poor mantle. Furthermore, we demonstrate that the aerial near-source plume Hg measurement is feasible with a drone-based active sampling configuration that captures all gaseous and particulate Hg species, and recommend this as the preferred method for quantifying volcanic Hg emissions going forward.

3.
Sci Total Environ ; 824: 153715, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35149079

RESUMEN

Dramatic environmental shifts are occuring throughout the Arctic from climate change, with consequences for the cycling of mercury (Hg). This review summarizes the latest science on how climate change is influencing Hg transport and biogeochemical cycling in Arctic terrestrial, freshwater and marine ecosystems. As environmental changes in the Arctic continue to accelerate, a clearer picture is emerging of the profound shifts in the climate and cryosphere, and their connections to Hg cycling. Modeling results suggest climate influences seasonal and interannual variability of atmospheric Hg deposition. The clearest evidence of current climate change effects is for Hg transport from terrestrial catchments, where widespread permafrost thaw, glacier melt and coastal erosion are increasing the export of Hg to downstream environments. Recent estimates suggest Arctic permafrost is a large global reservoir of Hg, which is vulnerable to degradation with climate warming, although the fate of permafrost soil Hg is unclear. The increasing development of thermokarst features, the formation and expansion of thaw lakes, and increased soil erosion in terrestrial landscapes are increasing river transport of particulate-bound Hg and altering conditions for aquatic Hg transformations. Greater organic matter transport may also be influencing the downstream transport and fate of Hg. More severe and frequent wildfires within the Arctic and across boreal regions may be contributing to the atmospheric pool of Hg. Climate change influences on Hg biogeochemical cycling remain poorly understood. Seasonal evasion and retention of inorganic Hg may be altered by reduced sea-ice cover and higher chloride content in snow. Experimental evidence indicates warmer temperatures enhance methylmercury production in ocean and lake sediments as well as in tundra soils. Improved geographic coverage of measurements and modeling approaches are needed to better evaluate net effects of climate change and long-term implications for Hg contamination in the Arctic.


Asunto(s)
Mercurio , Regiones Árticas , Cambio Climático , Ecosistema , Lagos , Mercurio/análisis
4.
Sci Rep ; 11(1): 10970, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34040077

RESUMEN

Ocean sediments are the largest sink for mercury (Hg) sequestration and hence an important part of the global Hg cycle1. Yet accepted global average Hg flux data for deep-ocean sediments (> 200 m depth) are not based on measurements on sediments but are inferred from sinking particulates2. Mercury fluxes have never been reported from the deepest zone, the hadal (> 6 km depth). Here we report the first measurements of Hg fluxes from two hadal trenches (Atacama and Kermadec) and adjacent abyssal areas (2-6 km). Mercury concentrations of up to 400 ng g-1 were the highest recorded in marine sediments remote from anthropogenic or hydrothermal sources. The two trench systems differed significantly in Hg concentrations and fluxes, but hadal and abyssal areas within each system did not. The relatively low recent mean flux at Kermadec was 6-15 times higher than the inferred deep-ocean average1,3, while the median flux across all cores was 22-56 times higher. Thus, some hadal and abyssal sediments are Hg accumulation hot-spots. The hadal zone comprises only ~ 1% of the deep-ocean area, yet a preliminary estimate based on sediment Hg and particulate organic carbon (POC) fluxes suggests total hadal Hg accumulation may be 12-30% of the estimate for the entire deep-ocean. The few abyssal data show equally high Hg fluxes near trench systems. These results highlight a need for further research into deep-ocean Hg fluxes to better constrain global Hg models.

5.
Sci Total Environ ; 757: 143800, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33280881

RESUMEN

Volcanism is a potentially important natural source of mercury (Hg) to the environment. However, its impact on the global Hg cycle remains poorly understood despite advances over the last five decades. This represents a major uncertainty in our understanding of the relative contributions of natural and anthropogenic Hg sources to the global atmosphere. This uncertainty, in turn, impacts evaluation of the effectiveness of policies to mitigate the impact of anthropogenic Hg on the environment. Here we critically review recent progress in volcanic Hg emission research, including advances in sampling methods and understanding of the post-emission behavior of Hg in the atmosphere. Our statistical analysis of the limited available data shows that the plumes of non-arc volcanoes exhibit significantly higher Hg concentrations than arc volcanoes, yet the latter emit 3-fold higher Hg fluxes on average. Arc volcanism also dominates volcanic gas emissions globally, indicating that arc volcanoes should be a priority for future Hg emission research. We explore several methodological challenges that continue to hinder progress in quantifying global volcanic Hg emissions, and discuss the importance of longer time-frame data collection to capture temporal variations in emissions. Recommendations are proposed for working toward a more accurate assessment of the global volcanic Hg flux. A detailed summary of all published volcanic Hg emissions data worldwide is also presented as a reference tool for future work.

6.
Sci Adv ; 5(10): eaaw4018, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31681836

RESUMEN

During the past 600 million years of Earth history, four of five major extinction events were synchronous with volcanism in large igneous provinces. Despite improved temporal frameworks for these events, the mechanisms causing extinctions remain unclear. Volcanic emissions of greenhouse gases, SO2, and halocarbons are generally considered as major factors in the biotic crises, resulting in global warming, acid deposition, and ozone layer depletion. Here, we show that pulsed elevated concentrations of mercury in marine and terrestrial sediments across the Triassic-Jurassic boundary in southern Scandinavia and northern Germany correlate with intense volcanic activity in the Central Atlantic Magmatic Province. The increased levels of mercury-the most genotoxic element on Earth-also correlate with high occurrences of abnormal fern spores, indicating severe environmental stress and genetic disturbance in the parent plants. We conclude that this offers compelling evidence that emissions of toxic volcanogenic substances contributed to the end-Triassic biotic crisis.


Asunto(s)
Embryophyta , Extinción Biológica , Mercurio , Erupciones Volcánicas , Embryophyta/efectos de los fármacos , Embryophyta/genética , Helechos , Fósiles , Alemania , Mercurio/toxicidad , Mutagénesis , Países Escandinavos y Nórdicos , Estrés Fisiológico
7.
Sci Total Environ ; 674: 58-70, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31003088

RESUMEN

The Minamata Convention to reduce anthropogenic mercury (Hg) emissions entered into force in 2017, and attention is now focused on how to best monitor its effectiveness at reducing Hg exposure to humans. A key question is how closely Hg concentrations in the human food chain, especially in fish and other aquatic wildlife, will track the changes in atmospheric Hg that are expected to occur following anthropogenic emission reductions. We investigated this question by evaluating several regional groups of case studies where Hg concentrations in aquatic biota have been monitored continuously or intermittently for several decades. Our analysis shows that in most cases Hg time trends in biota did not agree with concurrent Hg trends in atmospheric deposition or concentrations, and the divergence between the two trends has become more apparent over the past two decades. An over-arching general explanation for these results is that the impact of changing atmospheric inputs on biotic Hg is masked by two factors: 1) The aquatic environment contains a large inventory of legacy emitted Hg that remains available for bio-uptake leading to a substantial lag in biotic response time to a change in external inputs; and 2) Biotic Hg trends reflect the dominant effects of changes in multi-causal, local and regional processes (e.g., aquatic or terrestrial biogeochemical processes, feeding ecology, climate) that control the speciation, bioavailability, and bio-uptake of both present-day and legacy emitted Hg. Globally, climate change has become the most prevalent contributor to the divergence. A wide range of biotic Hg outcomes can thus be expected as anthropogenic atmospheric Hg emissions decline, depending on how these processes operate on specific regions and specific organisms. Therefore, evaluating the effectiveness of the Minamata Convention will require biomonitoring of multiple species that represent different trophic and ecological niches in multiple regions of the world.


Asunto(s)
Contaminantes Atmosféricos/análisis , Organismos Acuáticos/metabolismo , Monitoreo del Ambiente , Política Ambiental , Mercurio/análisis , Animales , Ecosistema , Mercurio/metabolismo
8.
Sci Total Environ ; 568: 1157-1170, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27102272

RESUMEN

For the Western North America Mercury Synthesis, we compiled mercury records from 165 dated sediment cores from 138 natural lakes across western North America. Lake sediments are accepted as faithful recorders of historical mercury accumulation rates, and regional and sub-regional temporal and spatial trends were analyzed with descriptive and inferential statistics. Mercury accumulation rates in sediments have increased, on average, four times (4×) from 1850 to 2000 and continue to increase by approximately 0.2µg/m(2) per year. Lakes with the greatest increases were influenced by the Flin Flon smelter, followed by lakes directly affected by mining and wastewater discharges. Of lakes not directly affected by point sources, there is a clear separation in mercury accumulation rates between lakes with no/little watershed development and lakes with extensive watershed development for agricultural and/or residential purposes. Lakes in the latter group exhibited a sharp increase in mercury accumulation rates with human settlement, stabilizing after 1950 at five times (5×) 1850 rates. Mercury accumulation rates in lakes with no/little watershed development were controlled primarily by relative watershed size prior to 1850, and since have exhibited modest increases (in absolute terms and compared to that described above) associated with (regional and global) industrialization. A sub-regional analysis highlighted that in the ecoregion Northwestern Forest Mountains, <1% of mercury deposited to watersheds is delivered to lakes. Research is warranted to understand whether mountainous watersheds act as permanent sinks for mercury or if export of "legacy" mercury (deposited in years past) will delay recovery when/if emissions reductions are achieved.

9.
Sci Total Environ ; 506-507: 430-43, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25437761

RESUMEN

With declining sea ice conditions in Arctic regions owing to changing climate, the large prospective reservoirs of oil and gas in Baffin Bay and Davis Strait are increasingly accessible, and the interest in offshore exploration and shipping through these regions has increased. Both of these activities are associated with the risk of hydrocarbon releases into the marine ecosystem. However, hydrocarbons are also present naturally in marine environments, in some cases deriving from oil seeps. We have analyzed hydrocarbon concentrations in eleven sediment cores collected from northern Baffin Bay during 2008 and 2009 Amundsen expeditions and have examined the hydrocarbon compositions in both pre- and post-industrial periods (i.e., before and after 1900) to assess the sources of hydrocarbons, and their temporal and spatial variabilities. Concentrations of ΣPAHs ranged from 341 to 2693 ng g(-1) dw, with concentrations in cores from sites within the North Water (NOW) Polynya generally higher. Individual PAH concentrations did not exceed concentrations of concern for marine aquatic life, with one exception found in a core collected within the NOW (one of the seven sediment core samples). Hydrocarbon biomarkers, including alkane profiles, OEP (odd-to-even preference), and TAR (terrigenous/aquatic ratios) values indicated that organic carbon at all sites is derived from both terrigenous higher plants and marine algae, the former being of greater significance at coastal sites, and the latter at the deepest sites at the southern boundary of the NOW. Biomarker ratios and chemical profiles indicate that petrogenic sources dominate over combustion sources, and thus long-range atmospheric transport is less significant than inputs from weathering. Present-day and historic pre-1900 hydrocarbon concentrations exhibited less than an order of magnitude difference for most compounds at all sites. The dataset presented here provides a baseline record of hydrocarbon concentrations in Baffin Bay sediments in advance of offshore exploration and increased shipping activities.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos/química , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis , Regiones Árticas , Bahías/química , Canadá
10.
Sci Total Environ ; 414: 22-42, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22104383

RESUMEN

Recent studies have shown that climate change is already having significant impacts on many aspects of transport pathways, speciation and cycling of mercury within Arctic ecosystems. For example, the extensive loss of sea-ice in the Arctic Ocean and the concurrent shift from greater proportions of perennial to annual types have been shown to promote changes in primary productivity, shift foodweb structures, alter mercury methylation and demethylation rates, and influence mercury distribution and transport across the ocean-sea-ice-atmosphere interface (bottom-up processes). In addition, changes in animal social behavior associated with changing sea-ice regimes can affect dietary exposure to mercury (top-down processes). In this review, we address these and other possible ramifications of climate variability on mercury cycling, processes and exposure by applying recent literature to the following nine questions; 1) What impact has climate change had on Arctic physical characteristics and processes? 2) How do rising temperatures affect atmospheric mercury chemistry? 3) Will a decrease in sea-ice coverage have an impact on the amount of atmospheric mercury deposited to or emitted from the Arctic Ocean, and if so, how? 4) Does climate affect air-surface mercury flux, and riverine mercury fluxes, in Arctic freshwater and terrestrial systems, and if so, how? 5) How does climate change affect mercury methylation/demethylation in different compartments in the Arctic Ocean and freshwater systems? 6) How will climate change alter the structure and dynamics of freshwater food webs, and thereby affect the bioaccumulation of mercury? 7) How will climate change alter the structure and dynamics of marine food webs, and thereby affect the bioaccumulation of marine mercury? 8) What are the likely mercury emissions from melting glaciers and thawing permafrost under climate change scenarios? and 9) What can be learned from current mass balance inventories of mercury in the Arctic? The review finishes with several conclusions and recommendations.


Asunto(s)
Atmósfera/química , Cambio Climático , Ecosistema , Contaminantes Ambientales/análisis , Cubierta de Hielo/química , Mercurio/análisis , Agua de Mar/química , Animales , Regiones Árticas , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/farmacocinética , Agua Dulce/química , Mercurio/metabolismo , Mercurio/farmacocinética , Metilación , Temperatura
12.
Sci Total Environ ; 407(24): 6120-31, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19781740

RESUMEN

BACKGROUND: Because of concern about the recently increasing levels of biological Hg in some areas of the Arctic, we examined the literature concerning the long-term changes of Hg in humans and selected Arctic marine mammals and birds of prey since pre-industrial times (i.e. before 1800A.D.), to determine the anthropogenic contribution to present-day Hg concentrations and the historical timing of any changes. METHODS: Mercury data from published articles were extracted on historical and pre-industrial concentrations as percentages of the recent maximum, as well as the man-made contribution was calculated and depicted in a uniform manner to provide an overview of the development over time. RESULTS AND DISCUSSION: Trends of [Hg] in hard tissues such as teeth, hair and feathers consistently showed that there had been an order-of-magnitude increase of [Hg] in Arctic marine foodweb-based animals that began in the mid- to late-19th Century and accelerated in the 20th Century. The median man-made contribution to present-day Hg concentrations was 92.4% ranging from 74.2 to 94.4%. Confidence in our data was increased by accompanying data in some studies on stable isotopes (delta(13)C, delta(15)N), which allowed us to normalize where necessary for changes in animal trophic position and feeding location over time, and by careful attention to the possibility of sample chemical diagenesis (Hg contamination or loss) which can alter the Hg content of ancient hard tissues. CONCLUSIONS: Wildlife hard tissue matrices provide consistent information with respect to the steep onset of Hg exposure of Arctic wildlife beginning in the latter half of the 19th Century. Today the man-made contribution was found to be above 92%. Stable isotope analyses provide important information to normalize for possible changes in diet over time, and are highly relevant to include when interpreting temporal trends, baseline concentrations as well as man-made anthropogenic contribution of Hg.


Asunto(s)
Mercurio/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminación Química del Agua/análisis , Animales , Regiones Árticas , Monitoreo del Ambiente , Plumas/metabolismo , Cadena Alimentaria , Cabello/metabolismo , Diente/metabolismo , Contaminación Química del Agua/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...