Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(36): e2404797, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39030758

RESUMEN

2D perovskite passivation strategies effectively reduce defect-assisted carrier nonradiative recombination losses on the perovskite surface. Nonetheless, severe energy losses are causing by carrier thermalization, interfacial nonradiative recombination, and conduction band offset still persist at heterojunction perovskite/PCBM interfaces, which limits further performance enhancement of inverted heterojunction PSCs. Here, 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin (5FTPP) is introduced between 3D/2D perovskite heterojunction and PCBM. Compared to tetraphenylporphyrin without electron-withdrawing fluoro-substituents, 5FTPP can self-assemble with PCBM at interface into donor-acceptor (D-A) complex with stronger supramolecular interaction and lower energy transfer losses. This rapid energy transfer from donor (5FTPP) to acceptor (PCBM) within femtosecond scale is demonstrated to enlarge hot carrier extraction rates and ranges, reducing thermalization losses. Furthermore, the incorporation of polystyrene derivative (PD) reinforces D-A interaction by inhibiting self-π-π stacking of 5FTPP, while fine-tuning conduction band offset and suppressing interfacial nonradiative recombination via Schottky barrier, dipole, and n-doping. Notably, the multidentate anchoring of PD-5FTPP with FA+, Pb2+, and I- mitigates the adverse effects of FA+ volatilization during thermal stress. Ultimately, devices with PD-5FTPP achieve a power conversion efficiency of 25.78% (certified: 25.36%), maintaining over 90% of initial efficiency after 1000 h of continuous illumination at the maximum power point (65 °C) under ISOS-L-2 protocol.

2.
Small Methods ; : e2400425, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38593370

RESUMEN

While the 2D/3D heterojunction is an effective method to improve the power conversion efficiency (PCE) of perovskite solar cells (PSCs), carriers are often confined in the quantum wells (QWs) due to the unique structure of 2D perovskite, which makes the charge transport along the out-of-plane direction difficult. Here, a 2D/3D ferroelectric heterojunction formed by 4,4-difluoropiperidine hydrochloride (2FPD) in inverted PSCs is reported. The enriched 2D perovskite (2FPD)2PbI4 layer with n = 1 on the perovskite surface exhibits ferroelectric response and has oriented dipoles along the out-of-plane direction. The ferroelectricity of the oriented dipole layer facilitates the enhancement of the built-in electric field (1.06 V) and the delay of the cooling process of hot carriers, reflected in the high carrier temperature (above 1400 K) and the prolonged photobleach recovery time (139.85 fs, measured at bandgap), improving the out-of-plane conductivity. In addition, the alignment of energy levels is optimized and exciton binding energy (32.8 meV) is reduced by changing the dielectric environment of the surface. Finally, the 2FPD-treated PSCs achieve a PCE of 24.82% (certified: 24.38%) with the synergistic effect of ferroelectricity and defect passivation, while maintaining over 90% of their initial efficiency after 1000 h of maximum power point tracking.

3.
Mater Horiz ; 10(12): 5763-5774, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37811708

RESUMEN

Many studies have shown that the severe photoluminescence quantum yield (PLQY) loss at the interface between the perovskite and electron transport layer (ETL) is the main cause of voltage loss in inverted perovskite solar cells (p-i-n PSCs). However, currently there are no effective in situ passivation techniques to minimize this nonradiative recombination. Here, the fluorinated pseudohalide ionic liquid (FPH-IL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIMTFSI) is introduced into the perovskite precursor formulation. EMIMTFSI can change the dielectric environment and energy-level arrangement of the perovskite by accumulating on the top surface and spontaneously forming dipoles. As a result, the excitonic binding energy (Eb) and nonradiative recombination loss are significantly reduced. At the same time, TFSI- reduces the formation energy of vacancy defects and stabilizes the perovskite phase by forming N-H⋯F hydrogen bonds between FA+ and the C-F bond in EMIMTFSI. Finally, the EMIMTFSI-modified p-i-n PSCs achieve an excellent efficiency of 24.81% with an impressive open-circuit voltage of 1.191 V for a 1.57 eV low-bandgap perovskite. In addition, the modified devices can maintain more than 95% PCE after continuous thermal aging at 85 °C for 500 h or illumination at the maximum power point for 800 h. This work provides a new idea for minimizing the non-radiative recombination losses in p-i-n PSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA