Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; : e2303529, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38430010

RESUMEN

Implant-associated osteomyelitis (IAOM) is characterized by bone infection and destruction; current therapy of antibiotic treatment and surgical debridement often results in drug resistance and bone defect. It is challenging to develop an antibiotic-free bactericidal and osteogenic-enhanced strategy for IAOM. Herein, an IAOM-tailored antibacterial and osteoinductive composite of copper (Cu)-strontium (Sr) peroxide nanoparticles (CSp NPs), encapsulated in polyethylene glycol diacrylate (PEGDA) (CSp@PEGDA), is designed. The dual functional CSp NPs display hydrogen peroxide (H2 O2 ) self-supplying and Fenton catalytic Cu2+ ions' release, generating plenty of hydroxyl radical (• OH) in a pH-responsive manner for bacterial killing, while the released Sr2+ promotes the in vitro osteogenicity regarding cell proliferation, alkaline phosphatase activity, extracellular matrix calcification, and osteo-associated genes expression. The integration of Cu2+ and Sr2+ in CSp NPs together with the coated PEGDA hydrogel ensures the stable and sustainable ion release during short- and long-term periods. Benefitted from the injectablity and photo-crosslink ability, CSp@PEGDA is able to thoroughly fill the infectious site and gelate in situ for bacterial elimination and bone regeneration, which is verified through in vivo evaluation using a clinical-simulating IAOM mouse model. These favorable abilities of CSp@PEGDA precisely meet the multiple therapeutic needs and pave a promising way for implant-associated osteomyelitis treatment.

2.
Anal Chem ; 96(12): 4933-4941, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38483253

RESUMEN

Nephritis is an inflammatory condition of the glomerulus, and the clinical gold standard for its diagnosis is a kidney biopsy. However, obtaining biopsy results can take several days, which does not meet the requirement of rapid diagnosis, especially for rapidly progressive types. To achieve an effective and noninvasive diagnosis, we propose a nephritis-specific, positive magnetic resonance imaging (MRI) contrast agent based on Gd3+ anchored walking dead macrophage Gd-RAW. Gd-RAW exhibits high selectivity for inflammatory renal parenchyma and provides comparable results to histopathology methods. The Gd-RAW-based MRI contrast agent reduces the diagnostic time of nephritis from 14 days of biopsy to 1 h. Furthermore, in a unilateral nephritis model constructed by increasing the glycerol concentration, the T1WI of renal parenchyma exhibits an increased signal-to-noise ratio, which is crucial for evaluating nephritic severity. This work promotes rapid diagnosis of nephritis and potentially provides sufficient evidence for clinicians to offer timely treatment to patients. The methodology of paramagnetic ion-anchored macrophage corpse also opens up new prospects for designing more specific and biosafe MRI contrast agents.


Asunto(s)
Medios de Contraste , Nefritis , Humanos , Riñón/diagnóstico por imagen , Nefritis/diagnóstico por imagen , Glomérulos Renales , Imagen por Resonancia Magnética/métodos
3.
Anal Chem ; 96(6): 2534-2542, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38302490

RESUMEN

Cerebrospinal fluid (CSF) biomarkers are more sensitive than the Movement Disorder Society (MDS) criteria for detecting prodromal Parkinson's disease (PD). Early detection of PD provides the best chance for successful implementation of disease-modifying treatments, making it crucial to effectively identify CSF extracted from PD patients or normal individuals. In this study, an intelligent sensor array was built by using three metal-organic frameworks (MOFs) that exhibited varying catalytic kinetics after reacting with potential protein markers. Machine learning algorithms were used to process fingerprint response patterns, allowing for qualitative and quantitative assessment of the proteins. The results were robust and capable of discriminating between PD and non-PD patients via CSF detection. The k-nearest neighbor regression algorithm was used to predict MDS scores with a minimum mean square error of 38.88. The intelligent MOF sensor array is expected to promote the detection of CSF biomarkers due to its ability to identify multiple targets and could be used in conjunction with MDS criteria and other techniques to diagnose PD more sensitively and selectively.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico , Biomarcadores/líquido cefalorraquídeo , Diagnóstico Precoz , Algoritmos , Aprendizaje Automático
4.
ACS Sens ; 8(12): 4587-4596, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38038440

RESUMEN

Ascorbic acid (AA) is significant in protecting the brain from further damage and maintaining brain homeostasis after ischemia stroke (IS); however, the dynamic change of cerebral AA content after different degrees of ischemic stroke is still unclear. Herein, carboxylated single-walled carbon nanotube (CNT-COOH)- and polyethylenedioxythiophene (PEDOT)-modified carbon fiber microelectrodes (CFEs) were proposed to detect in situ cerebral AA with sensitivity, selectivity, and stability. Under differential pulse voltammetry scanning, the CFE/CNT-COOH/PEDOT gave a ratiometric, electrochemically responsive signal. The internal standard peak at -310 mV was from the reversible peak of O2 reduction and the deprotonation and protonation of quinone groups, while AA was oxidized at -70 mV. In vivo experimental results indicated that the cerebral AA level gradually increased with the ischemic time increasing in different middle cerebral artery occlusion (MCAO) model mice. This work implies that the increasing cerebral AA level may be highly related to the glutamate excitotoxicity and ROS-led cell apoptosis and paves a new way for further understanding the release and metabolic mechanisms of AA during ischemia reperfusion and IS.


Asunto(s)
Ácido Ascórbico , Encéfalo , Ratas , Ratones , Animales , Ácido Ascórbico/química , Ratas Sprague-Dawley , Encéfalo/metabolismo , Reperfusión , Isquemia/metabolismo
5.
Nano Lett ; 23(18): 8628-8636, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37694968

RESUMEN

Magnetic resonance imaging (MRI) is an important tool in the diagnosis of many cancers. However, clinical gadolinium (Gd)-based MRI contrast agents have limitations, such as large doses and potential side effects. To address these issues, we developed a hydrogen-bonded organic framework-based MRI contrast agent (PFC-73-Mn). Due to the hydrogen-bonded interaction of water molecules and the restricted rotation of manganese ions, PFC-73-Mn exhibits high longitudinal relaxation r1 (5.03 mM-1 s-1) under a 3.0 T clinical MRI scanner. A smaller intravenous dose (8 µmol of Mn/kg) of PFC-73-Mn can provide strong contrast and accurate diagnosis in multiple kinds of cancers, including breast tumor and ultrasmall orthotopic glioma. PFC-73-Mn represents a prospective new approach in tumor imaging, especially in early-stage cancer.


Asunto(s)
Glioma , Manganeso , Humanos , Medios de Contraste , Gadolinio , Imagen por Resonancia Magnética/métodos
6.
ACS Appl Mater Interfaces ; 15(28): 33239-33249, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37399544

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune and inflammatory disease that is so far incurable with long-term health risks. The high doses and frequent administration for the available RA drug always lead to adverse side effects. Aiming at the obstacles to achieving effective RA treatment, we prepared macrophage cell membrane-camouflaged nanoparticles (M-EC), which were assembled from epigallocatechin gallate (EGCG) and cerium(IV) ions. Due to its geometrical similarity to the active metal sites of a natural antioxidant enzyme, the EC possessed a high scavenge efficiency to various types of reactive oxygen species (ROS) and reactive nitrogen species (RNS). The macrophage cell membrane assisted M-EC in escaping from the immune system, being uptaken by inflammatory cells, and specifically binding IL-1ß. After tail vein injection to the collagen-induced arthritis (CIA) mouse model, the M-EC accumulated at inflamed joints and effectively repaired the bone erosion and cartilage damage of rheumatoid arthritis by relieving synovial inflammation and cartilage erosion. It is expected that the M-EC can not only pave a new way for designing metal-phenolic networks with better biological activity but also provide a more biocompatible therapeutic strategy for effective treatment of RA.


Asunto(s)
Artritis Reumatoide , Cerio , Ratones , Animales , Cerio/farmacología , Cerio/uso terapéutico , Biomimética , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Inflamación/tratamiento farmacológico
7.
Anal Chem ; 95(21): 8267-8276, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37191204

RESUMEN

Patients with triple-negative breast cancer (TNBC) have dismal prognoses due to the lack of therapeutic targets and susceptibility to lymph node (LN) metastasis. Therefore, it is essential to develop more effective approaches to identify early TNBC tissues and LNs. In this work, a magnetic resonance imaging (MRI) contrast agent (Mn-iCOF) was constructed based on the Mn(II)-chelated ionic covalent organic framework (iCOF). Because of the porous structure and hydrophilicity, the Mn-iCOF has a high longitudinal relaxivity (r1) of 8.02 mM-1 s-1 at 3.0 T. For the tumor-bearing mice, a lower dose (0.02 mmol [Mn]/kg) of Mn-iCOF demonstrated a higher signal-to-noise ratio (SNR) value (1.8) and longer retention time (2 h) compared to a 10-fold dose of commercial Gd-DOTA (0.2 mmol [Gd]/kg). Moreover, the Mn-iCOF can provide continuous and significant MR contrast for the popliteal LNs within 24 h, allowing for accurate evaluation and dissection of LNs. These excellent MRI properties of the Mn-iCOF may open new avenues for designing more biocompatible MRI contrast agents with higher resolutions, particularly in the diagnosis of TNBC.


Asunto(s)
Estructuras Metalorgánicas , Neoplasias de la Mama Triple Negativas , Humanos , Ratones , Animales , Estructuras Metalorgánicas/química , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Medios de Contraste/química , Espectroscopía de Resonancia Magnética
8.
ACS Appl Mater Interfaces ; 15(4): 4947-4958, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36651694

RESUMEN

Oxidative stress due to Cu2+-triggered aggregation of ß-amyloid protein (Aß) and reactive oxygen species (ROS) overexpression in the brain is an important hallmark of early stages of Alzheimer's disease (AD) pathogenesis. The ideal modulator for improving the oxidative stress microenvironment in AD brains should take both Cu2+ and ROS into consideration, which has been rarely reported. Here, a combined therapeutic strategy was achieved by co-encapsulating superoxide dismutase (SOD) and catalase (CAT) in imine-linked covalent organic frameworks (COFs), which were modified with peptide KLVFF (T5). The nanocomposite SC@COF-T5 exhibited an oxidative stress eradicating ability through ROS elimination and Cu2+ chelation, combined with the inhibition of Aß42 monomer aggregation and disaggregation of Aß42 fibrils. In vivo experiments indicated that SC@COF-T5 with a high blood-brain barrier (BBB) penetration efficiency was effective to reduce Aß deposition, expression of pro-inflammatory cytokines, ROS levels, and neurologic damage in AD model mice, consequently rescuing memory deficits of AD mice. This work not only confirms the feasibility and merits of the therapeutic strategy regarding multiple targets for treatment of early AD pathogenesis but also opens up a novel direction for imine-linked COFs in biomedical applications.


Asunto(s)
Enfermedad de Alzheimer , Estructuras Metalorgánicas , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Estructuras Metalorgánicas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Péptidos beta-Amiloides/metabolismo , Estrés Oxidativo , Encéfalo/metabolismo
9.
Anal Chim Acta ; 1188: 339191, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34794562

RESUMEN

Lanthanide-functionalized porous organic materials have been the promising candidates in the chemical and biological sensing. Considering the superior thermal and solvent stability of covalent organic frameworks (COFs), the development of lanthanide ions-functionalized COFs based sensing platform is meaningful, while remains to be a challenge. In this work, a new imine-linked COF which provides suitable coordination sites for Tb3+ was constructed via the Schiff base reaction between P-phenylenediamine (Pda) and 2,6-Diformylpyridine (Dfp). Benefiting from its high signal-to-noise, the COF@Tb shows excellent ability to determinate ciprofloxacin (CIP) with a detection limit of 3.01 nM. The measurement can maintain good stability in the presence of potential interference or in actual sample. Being washed with ethanol after each measurement, COF@Tb can be recycled for five times. This work provides a novel alternative strategy for efficient construction of lanthanide-grafted COFs and may promote the development of porous organic materials based chemical sensing.


Asunto(s)
Estructuras Metalorgánicas , Antibacterianos , Iminas , Porosidad , Solventes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...