Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(18): 12734-12743, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37114468

RESUMEN

Experimental evidence shows that CuFe2O4 exhibits excellent catalytic performance in the SCR reaction. However, there is a lack of in-depth research on its specific reaction mechanism. Our study begins by computing the adsorption model of molecules like NH3 and then goes on to examine the SCR reaction mechanism of NH3 on CuFe2O4 before and after Zn doping. The results indicate that NH3 is chemically adsorbed (-1.26 eV) on the surface and has a strong interaction with the substrate. Importantly, Zn doping provides more favorable reactive sites for NH3 molecules. Subsequent investigation into the NH3 dehydrogenation and SCR reaction processes showed that incorporating Zn can greatly decrease the energy barrier of the most critical step in the reaction (0.58 eV). Additionally, the study also assesses the feasibility of the reaction of adsorbed NO with surface active O atoms to form NO2 (barrier 0.86 eV). Lastly, the sulfur resistance of the catalyst before and after doping is calculated and analyzed, and it is found that Zn doping effectively improves the sulfur resistance. Our study provides valuable theoretical guidance for the development of ferrite spinel and doping modification.

2.
ACS Appl Mater Interfaces ; 15(15): 19209-19219, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37039286

RESUMEN

In this paper, laser micro-cladding technology (LMC) was conducted to prepare high-temperature Pt thick film sensors in situ. The formability, microstructure, sintering mechanism, and electrical properties of the LMCed Pt thick films were first studied systematically. Results indicated that with the increase of laser power density, the sintering degree of the Pt thick film increased obviously, improving its adhesion strength and reducing its resistivity. However, when the laser power density exceeded the threshold, holes or grooves were formed in the Pt film, leading to the degeneration of its properties. A Pt thick film with good adhesion strength, excellent conductive networks, and the minimum resistivity (46 ± 2 µΩ·cm) was obtained at a laser power density of 1.37 × 106 W·cm-2. Then, Pt thick film temperature sensors (including Pt thermal resistance temperature (RTD) and Pt-Pt10%Rh thermocouple sensors) were conformally prepared by LMC. Their temperature-sensing performance became stable after the initial high-temperature calibration, with a linearity of 0.9985 for the RTD with a TCR of 2.46 × 10-3/°C (at 920 °C) and a linearity of 0.9905 for the thermocouple with a Seebeck coefficient of 9.7 µV/°C, both of which are better than that made by direct DC magnetron sputtering deposition. Therefore, this work provides a novel feasible way to conformally integrate high-performance Pt film sensors in situ.

3.
Langmuir ; 39(9): 3350-3357, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36802638

RESUMEN

The photocatalytic enhancement of sliver-based metals compounded with semiconductor materials has been demonstrated. However, there are relatively few studies on the effect of particle size in the system on photocatalytic performance. In this paper, silver nanoparticles of two different sizes, 25 and 50 nm, were prepared by a wet chemical method and subsequently sintered to obtain a photocatalyst with a core-shell structure. The photocatalyst Ag@TiO2-50/150 prepared in this study has a hydrogen evolution rate as high as 4538.90 µmol·g-1·h-1. It is interesting to find that when the ratio of silver core size to composite size is 1:3, the hydrogen yield is almost not affected by the silver core diameter, and the hydrogen production rate is basically the same. In addition, the rate of hydrogen precipitation in air for 9 months was still more than 9 times those of previous studies. This provides a new idea for the study of the oxidation resistance and stability of photocatalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA