Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Cell ; 42(6): 1032-1050.e10, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38759656

RESUMEN

Total tumor clearance through immunotherapy is associated with a fully coordinated innate and adaptive immune response, but knowledge on the exact contribution of each immune cell subset is limited. We show that therapy-induced intratumoral CD8+ T cells recruited and skewed late-stage activated M1-like macrophages, which were critical for effective tumor control in two different murine models of cancer immunotherapy. The activated CD8+ T cells summon these macrophages into the tumor and their close vicinity via CCR5 signaling. Exposure of non-polarized macrophages to activated T cell supernatant and tumor lysate recapitulates the late-stage activated and tumoricidal phenotype in vitro. The transcriptomic signature of these macrophages is also detected in a similar macrophage population present in human tumors and coincides with clinical response to immune checkpoint inhibitors. The requirement of a functional co-operation between CD8+ T cells and effector macrophages for effective immunotherapy gives warning to combinations with broad macrophage-targeting strategies.


Asunto(s)
Linfocitos T CD8-positivos , Inmunoterapia , Macrófagos , Animales , Linfocitos T CD8-positivos/inmunología , Inmunoterapia/métodos , Ratones , Humanos , Macrófagos/inmunología , Receptores CCR5/metabolismo , Receptores CCR5/genética , Ratones Endogámicos C57BL , Activación de Macrófagos/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Activación de Linfocitos/inmunología , Femenino , Microambiente Tumoral/inmunología
2.
Nat Commun ; 15(1): 48, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167722

RESUMEN

CD3 bispecific antibody (CD3 bsAb) therapy is clinically approved for refractory hematological malignancies, but responses in solid tumors have been limited so far. One of the main hurdles in solid tumors is the lack of sufficient T-cell infiltrate. Here, we show that pre-treatment vaccination, even when composed of tumor-unrelated antigens, induces CXCR3-mediated T-cell influx in immunologically 'cold' tumor models in male mice. In the absence of CD3 bsAb, the infiltrate is confined to the tumor invasive margin, whereas subsequent CD3 bsAb administration induces infiltration of activated effector CD8 T cells into the tumor cell nests. This combination therapy installs a broadly inflamed Th1-type tumor microenvironment, resulting in effective tumor eradication. Multiple vaccination formulations, including synthetic long peptides and viruses, empower CD3 bsAb therapy. Our results imply that eliciting tumor infiltration with vaccine-induced tumor-(un)related T cells can greatly improve the efficacy of CD3 bsAbs in solid tumors.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias , Vacunas , Masculino , Animales , Ratones , Linfocitos T , Complejo CD3 , Neoplasias/tratamiento farmacológico , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Antígenos de Neoplasias , Microambiente Tumoral
4.
J Exp Med ; 220(10)2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37466652

RESUMEN

Germinal center (GC) dysregulation has been widely reported in the context of autoimmunity. Here, we show that interleukin 21 (IL-21), the archetypal follicular helper T cell (Tfh) cytokine, shapes the scale and polarization of spontaneous chronic autoimmune as well as transient immunization-induced GC. We find that IL-21 receptor deficiency results in smaller GC that are profoundly skewed toward a light zone GC B cell phenotype and that IL-21 plays a key role in selection of light zone GC B cells for entry to the dark zone. Light zone skewing has been previously reported in mice lacking the cell cycle regulator cyclin D3. We demonstrate that IL-21 triggers cyclin D3 upregulation in GC B cells, thereby tuning dark zone inertial cell cycling. Lastly, we identify Foxo1 regulation as a link between IL-21 signaling and GC dark zone formation. These findings reveal new biological roles for IL-21 within GC and have implications for autoimmune settings where IL-21 is overproduced.


Asunto(s)
Centro Germinal , Linfocitos T Colaboradores-Inductores , Animales , Ratones , Ciclina D3 , Regulación hacia Arriba
5.
Immunother Adv ; 3(1): ltad001, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36818683

RESUMEN

Efficacy of checkpoint inhibitor therapies in cancer varies greatly, with some patients showing complete responses while others do not respond and experience progressive disease. We aimed to identify correlates of response and progression following PD-1-directed therapy by immunophenotyping peripheral blood samples from 20 patients with advanced malignant melanoma before and after treatment with the PD-1 blocking antibody pembrolizumab. Our data reveal that individuals responding to PD-1 blockade were characterised by increased CD8 T cell proliferation following treatment, while progression was associated with an increase in CTLA-4-expressing Treg. Remarkably, unsupervised clustering analysis of pre-treatment T cell subsets revealed differences in individuals that went on to respond to PD-1 blockade compared to individuals that did not. These differences mapped to expression of the proliferation marker Ki67 and the costimulatory receptor CD28 as well as the inhibitory molecules 2B4 and KLRG1. While these results require validation in larger patient cohorts, they suggest that flow cytometric analysis of a relatively small number of T cell markers in peripheral blood could potentially allow stratification of PD-1 blockade treatment response prior to therapy initiation.

6.
Nat Commun ; 13(1): 6757, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36347877

RESUMEN

Blockade of CD28 costimulation with CTLA-4-Ig/Abatacept is used to dampen effector T cell responses in autoimmune and transplantation settings. However, a significant drawback of this approach is impaired regulatory T cell homeostasis that requires CD28 signaling. Therefore, strategies that restrict the effects of costimulation blockade to effector T cells would be advantageous. Here we probe the relative roles of CD28 and IL-2 in maintaining Treg. We find provision of IL-2 counteracts the regulatory T cell loss induced by costimulation blockade while minimally affecting the conventional T cell compartment. These data suggest that combining costimulation blockade with IL-2 treatment may selectively impair effector T cell responses while maintaining regulatory T cells. Using a mouse model of autoimmune diabetes, we show combined therapy supports regulatory T cell homeostasis and protects from disease. These findings are recapitulated in humanised mice using clinically relevant reagents and provide an exemplar for rational use of a second immunotherapy to offset known limitations of the first.


Asunto(s)
Antígenos CD28 , Linfocitos T Reguladores , Autoinmunidad , Interleucina-2/farmacología , Antígeno CTLA-4 , Activación de Linfocitos , Abatacept/farmacología , Inmunomodulación
7.
Nat Immunol ; 21(10): 1244-1255, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32747817

RESUMEN

Follicular helper T (TFH) cells are implicated in type 1 diabetes (T1D), and their development has been linked to CD28 costimulation. We tested whether TFH cells were decreased by costimulation blockade using the CTLA-4-immunoglobulin (Ig) fusion protein (abatacept) in a mouse model of diabetes and in individuals with new-onset T1D. Unbiased bioinformatics analysis identified that inducible costimulatory molecule (ICOS)+ TFH cells and other ICOS+ populations, including peripheral helper T cells, were highly sensitive to costimulation blockade. We used pretreatment TFH profiles to derive a model that could predict clinical response to abatacept in individuals with T1D. Using two independent approaches, we demonstrated that higher frequencies of ICOS+ TFH cells at baseline were associated with a poor clinical response following abatacept administration. Therefore, TFH analysis may represent a new stratification tool, permitting the identification of individuals most likely to benefit from costimulation blockade.


Asunto(s)
Abatacept/uso terapéutico , Antígenos CD28/metabolismo , Diabetes Mellitus Tipo 1/inmunología , Centro Germinal/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia/métodos , Linfocitos T Colaboradores-Inductores/inmunología , Abatacept/farmacología , Animales , Biomarcadores Farmacológicos , Antígenos CD28/genética , Células Cultivadas , Biología Computacional , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/terapia , Modelos Animales de Enfermedad , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Resultado del Tratamiento
8.
Sci Immunol ; 4(35)2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31152091

RESUMEN

CTLA-4 is a critical negative regulator of the immune system and a major target for immunotherapy. However, precisely how it functions in vivo to maintain immune homeostasis is not clear. As a highly endocytic molecule, CTLA-4 can capture costimulatory ligands from opposing cells by a process of transendocytosis (TE). By restricting costimulatory ligand expression in this manner, CTLA-4 controls the CD28-dependent activation of T cells. Regulatory T cells (Tregs) constitutively express CTLA-4 at high levels and, in its absence, show defects in TE and suppressive function. Activated conventional T cells (Tconv) are also capable of CTLA-4-dependent TE; however, the relative use of this mechanism by Tregs and Tconv in vivo remains unclear. Here, we set out to characterize both the perpetrators and cellular targets of CTLA-4 TE in vivo. We found that Tregs showed constitutive cell surface recruitment of CTLA-4 ex vivo and performed TE rapidly after TCR stimulation. Tregs outperformed activated Tconv at TE in vivo, and expression of ICOS marked Tregs with this capability. Using TCR transgenic Tregs that recognize a protein expressed in the pancreas, we showed that the presentation of tissue-derived self-antigen could trigger Tregs to capture costimulatory ligands in vivo. Last, we identified migratory dendritic cells (DCs) as the major target for Treg-based CTLA-4-dependent regulation in the steady state. These data support a model in which CTLA-4 expressed on Tregs dynamically regulates the phenotype of DCs trafficking to lymph nodes from peripheral tissues in an antigen-dependent manner.


Asunto(s)
Antígeno CTLA-4/metabolismo , Movimiento Celular/inmunología , Células Dendríticas/inmunología , Linfocitos T Reguladores/inmunología , Transcitosis/inmunología , Animales , Presentación de Antígeno/inmunología , Autoantígenos/inmunología , Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Antígeno CTLA-4/genética , Femenino , Activación de Linfocitos/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Fenotipo , Receptores de Antígenos de Linfocitos T/metabolismo
9.
Front Immunol ; 9: 1941, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30210496

RESUMEN

Co-ordinated interaction between distinct cell types is a hallmark of successful immune function. A striking example of this is the carefully orchestrated cooperation between helper T cells and B cells that occurs during the initiation and fine-tuning of T-cell dependent antibody responses. While these processes have evolved to permit rapid immune defense against infection, it is becoming increasingly clear that such interactions can also underpin the development of autoimmunity. Here we discuss a selection of cellular and molecular pathways that mediate T cell/B cell collaboration and highlight how in vivo models and genome wide association studies link them with autoimmune disease. In particular, we emphasize how CTLA-4-mediated regulation of CD28 signaling controls the engagement of secondary costimulatory pathways such as ICOS and OX40, and profoundly influences the capacity of T cells to provide B cell help. While our molecular understanding of the co-operation between T cells and B cells derives from analysis of secondary lymphoid tissues, emerging evidence suggests that subtly different rules may govern the interaction of T and B cells at ectopic sites during autoimmune inflammation. Accordingly, the phenotype of the T cells providing help at these sites includes notable distinctions, despite sharing core features with T cells imparting help in secondary lymphoid tissues. Finally, we highlight the interdependence of T cell and B cell responses and suggest that a significant beneficial impact of B cell depletion in autoimmune settings may be its detrimental effect on T cells engaged in molecular conversation with B cells.


Asunto(s)
Autoinmunidad , Linfocitos B/inmunología , Centro Germinal/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Linfocitos B/patología , Antígenos CD28/inmunología , Antígeno CTLA-4/inmunología , Estudio de Asociación del Genoma Completo , Centro Germinal/patología , Humanos , Inflamación/inmunología , Inflamación/patología , Linfocitos T Colaboradores-Inductores/patología
10.
Prog Mol Biol Transl Sci ; 136: 245-77, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26615100

RESUMEN

Since the discovery of specialized T cells with regulatory function, harnessing the power of these cells to ameliorate autoimmunity has been a major goal. Here we collate the evidence that regulatory T cells (Treg) can inhibit Type 1 diabetes in animal models and humans. We discuss the anatomical sites and molecular mechanisms of Treg suppressive function in the Type 1 diabetes setting, citing evidence that Treg can function in both the pancreatic lymph nodes and within the pancreatic lesion. Involvement of the CTLA-4 pathway, as well as TGF-ß and IL-2 deprivation will be considered. Finally, we summarize current efforts to manipulate Treg therapeutically in individuals with Type 1 diabetes. The translation of this research area from bench to bedside is still in its infancy, but the remarkable therapeutic potential of successfully manipulating Treg populations is clear to see.


Asunto(s)
Diabetes Mellitus Tipo 1/inmunología , Linfocitos T Reguladores/inmunología , Investigación Biomédica Traslacional , Animales , Diabetes Mellitus Tipo 1/terapia , Humanos , Terapia de Inmunosupresión , Modelos Inmunológicos
11.
Proc Natl Acad Sci U S A ; 112(2): 524-9, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25548162

RESUMEN

Cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) is an essential regulator of T-cell responses, and its absence precipitates lethal T-cell hyperactivity. However, whether CTLA-4 acts simply to veto the activation of certain clones or plays a more nuanced role in shaping the quality of T-cell responses is not clear. Here we report that T cells in CTLA-4-deficient mice show spontaneous T-follicular helper (T(FH)) differentiation in vivo, and this is accompanied by the appearance of large germinal centers (GCs). Remarkably, short-term blockade with anti-CTLA-4 antibody in wild-type mice is sufficient to elicit T(FH) generation and GC development. The latter occurs in a CD28-dependent manner, consistent with the known role of CTLA-4 in regulating the CD28 pathway. CTLA-4 can act by down-regulating CD80 and CD86 on antigen presenting cells (APCs), thereby altering the level of CD28 engagement. To mimic reduced CD28 ligation, we used mice heterozygous for CD28, revealing that the magnitude of CD28 engagement is tightly linked to the propensity for T(FH) differentiation. In contrast, other parameters of T-cell activation, including CD62L down-regulation and Ki67 expression, were relatively insensitive to altered CD28 level. Altered T(FH) generation as a result of graded reduction in CD28 was associated with decreased numbers of GC B cells and a reduction in overall GC size. These data support a model in which CTLA-4 control of immunity goes beyond vetoing T-cell priming and encompasses the regulation of T(FH) differentiation by graded control of CD28 engagement.


Asunto(s)
Antígenos CD28/metabolismo , Antígeno CTLA-4/metabolismo , Linfocitos T Colaboradores-Inductores/citología , Linfocitos T Colaboradores-Inductores/inmunología , Inmunidad Adaptativa , Animales , Autoanticuerpos/biosíntesis , Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Antígenos CD28/deficiencia , Antígenos CD28/genética , Antígeno CTLA-4/deficiencia , Antígeno CTLA-4/genética , Diferenciación Celular/inmunología , Centro Germinal/citología , Centro Germinal/inmunología , Heterocigoto , Ligandos , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Modelos Inmunológicos
12.
PLoS One ; 9(9): e106955, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25203682

RESUMEN

The aryl hydrocarbon receptor (AhR) has been shown to be required for optimal Thelper (Th) 17 cell activation. Th17 cells provide immunity against extracellular pathogens and are implicated in autoimmune diseases. Herein, the role of the AhR in cytokine production by Th17, and by the analogous population of T cytotoxic (Tc)17 cells, has been examined. Lymph node Tc (CD8(+)) and Th (CD4(+)) cells were isolated by negative selection from naive AhR(+/-) and AhR(-/-) mice and polarised to Tc1/Th1 or Tc17/Th17 phenotypes with appropriate cytokines. Cell differentiation was assessed as a function of mRNA and protein (ELISA and flow cytometry) expression for interferon (IFN)-γ and for key Th17 cytokines. In AhR(+/-) mice, Th17 cells displayed an exclusive IL-17 profile, which was markedly inhibited by a selective AhR antagonist to levels observed in AhR knockout mice. Addition of the natural AhR agonist 6-formylindolo[3,2-b]carbazole (FICZ) markedly enhanced Th17 cell activity in the heterozygotes. In contrast, Tc17 cells polarised into 3 distinct subsets: producing either IL-17 or IFN-γ alone, or both cytokines. Blocking AhR was also detrimental to Tc17 development, with reduced responses recorded in AhR(-/-) mice and antagonist-mediated reduction of IL-17 expression in the heterozygotes. However, Tc17 cells were largely refractory to exogenous FICZ, presumably because Tc17 cells express baseline AhR mRNA, but unlike Th17 cells, there is no marked up-regulation during polarisation. Thus, Th17 cell development is more dependent upon AhR activation than is Tc17 cell development, suggesting that endogenous AhR ligands play a much greater role in driving Th17 cell responses.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Linfocitos T Citotóxicos/citología , Células Th17/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Femenino , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Interleucina-17/biosíntesis , Interleucina-17/genética , Interleucinas/biosíntesis , Interleucinas/genética , Cinética , Masculino , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Hidrocarburo de Aril/deficiencia , Receptores de Hidrocarburo de Aril/genética , Linfocitos T Citotóxicos/metabolismo , Células Th17/metabolismo , Interleucina-22
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...