Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38535484

RESUMEN

Limited throughput is a shortcoming of the Scanning Tunneling Microscope (STM), particularly when used for atomically precise lithography. To address this issue, we have developed an on-chip STM based on Microelectromechanical-Systems (MEMS) technology. The device reported here has one degree of freedom, replacing the Z axis in a conventional STM. The small footprint of the on-chip STM provides a great opportunity to increase STM throughput by incorporating a number of on-chip STMs in an array to realize parallel STM. The tip methodology adopted for the on-chip STM presented here, which is a batch-fabricated Si tip, makes our design conducive to this goal. In this work, we investigate the capability of this on-chip STM with an integrated Si tip for STM imaging. We integrate the on-chip STM into a commercial ultrahigh-vacuum STM system and perform imaging with atomic resolution on par with conventional STMs but at higher scan speeds due to the higher sensitivity of the MEMS actuator relative to a piezotube. The results attest that it is possible to achieve a parallel and high-throughput STM platform, which is a fully batch-fabricated MEMS STM nanopositioner capable of performing atomic-resolution STM imaging.

2.
J Vis Exp ; (101): e52900, 2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-26274555

RESUMEN

Reducing the scale of etched nanostructures below the 10 nm range eventually will require an atomic scale understanding of the entire fabrication process being used in order to maintain exquisite control over both feature size and feature density. Here, we demonstrate a method for tracking atomically resolved and controlled structures from initial template definition through final nanostructure metrology, opening up a pathway for top-down atomic control over nanofabrication. Hydrogen depassivation lithography is the first step of the nanoscale fabrication process followed by selective atomic layer deposition of up to 2.8 nm of titania to make a nanoscale etch mask. Contrast with the background is shown, indicating different mechanisms for growth on the desired patterns and on the H passivated background. The patterns are then transferred into the bulk using reactive ion etching to form 20 nm tall nanostructures with linewidths down to ~6 nm. To illustrate the limitations of this process, arrays of holes and lines are fabricated. The various nanofabrication process steps are performed at disparate locations, so process integration is discussed. Related issues are discussed including using fiducial marks for finding nanostructures on a macroscopic sample and protecting the chemically reactive patterned Si(100)-H surface against degradation due to atmospheric exposure.


Asunto(s)
Nanoestructuras/química , Nanotecnología/métodos , Microscopía de Túnel de Rastreo/métodos , Impresión
3.
ACS Nano ; 7(5): 4422-8, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23540393

RESUMEN

Silicon dangling bonds exposed on the monohydride silicon (001) (Si(001):H) surface are highly reactive, thus enabling site-selective absorption of atoms and single molecules into custom patterns designed through the controlled removal of hydrogen atoms. Current implementations of high-resolution hydrogen lithography on the Si(001):H surface rely on sequential removal of hydrogen atoms using the tip of a scanning probe microscope. Here, we present a scalable thermal process that yields very long rows of single dimer wide silicon dangling bonds suitable for self-assembly of atoms and molecules into one-dimensional structures of unprecedented length on Si(001):H. The row consists of the standard buckled Si dimer and an unexpected flat dimer configuration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...