Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Conserv Physiol ; 12(1): coad083, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38369984

RESUMEN

Physiological indexes like blood parameters have been widely used to monitor the health of free-roaming animals. Attempts to reintroduce one of China's most endangered species, the giant panda (Ailuropoda melanoleuca), have been hampered by a lack of data on its ecology and physiology. We examined three giant pandas' hematological and blood chemistry parameters in a soft release program and 30 captive giant pandas as controls and determined the reference intervals (RIs) for those blood parameters in the captive animals. Elevation, captivity status and the interaction of those factors were statistically significant for hematologic measures. Release pandas had significantly higher hemoglobin and hematocrit values after they moved to high elevation locations. We also found significant difference in the enzyme parameters between high and low elevation pandas such as higher aspartate aminotransferase, alanine aminotransferase, creatinine kinase, amylase and lower lactate dehydrogenase and alkaline phosphatase. Release pandas also had higher nutrition parameter values such as higher albumin, globulin and creatinine. The RI for blood parameters in our study provides a baseline to monitor the health of captive animals and forms the basis for assessing the health of free-roaming giant pandas in future reintroduction efforts.

2.
Conserv Biol ; 38(2): e14215, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37990845

RESUMEN

China announced the development of its first 5 national parks in 2021, the primary objective of which is to conserve the natural state and integrity of natural ecosystems. As such, ecosystem services and biodiversity levels are crucial assessment factors for the parks. For Giant Panda National Park (GPNP), we evaluated ecological sensitivity based on water and soil erosion and rocky desertification; ecosystem services based on headwater conservation, soil and water conservation, and biodiversity conservation; and presence of giant panda (Ailuropoda melanoleuca) and sympatric species (e.g., takin [Budorcas taxicolor], Asiatic black bear [Ursus thibetanus]) habitat suitability derived from niche modeling to identify the ecosystem status and assess ecological problems within the park. From our results, we proposed ecologically critical areas to target to meet the park's goals. The suitable habitat for pandas and sympatric species encompassed 62.98% of the park and occurred mainly in the Minshan Mountains. One quarter of the total area (25.67%) contained areas important for ecosystem services. Ecologically sensitive and extremely sensitive areas covered 88.78% of the park and were distributed mainly in Qionglaishan and Minshan Mountains. This coverage indicated that there was much habitat for pandas and sympatric species but that the ecosystems in GPNP are vulnerable. Therefore, ecologically critical areas encompassed all suitable habitats for all the species examined and areas important and extremely important to ecosystem service provision,ecologically sensitive and extremely sensitive areas, encompassed 15.17% of panda habitat, accounted for 16.37% of the GPNP area, and were distributed mainly in the Minshan Mountains. Our results indicated where conservation efforts should be focused in the park and that by identifying ecologically critical areas managers can provide targeted protection for wildlife habitat and ecosystems and effectively and efficiently protect the composite ecosystem. Additionally, our methods can be used to inform development of new national parks.


Medición de los servicios ambientales y la sensibilidad ecológica para una conservación integral en el Parque Nacional del Panda Gigante Resumen China anunció el crecimiento de sus primeros cinco parques nacionales en 2021, con el objetivo principal de conservar el estado natural y la integridad de los ecosistemas naturales. Para ello, los servicios ambientales y los niveles de biodiversidad son factores cruciales de evaluación para los parques. Para poder identificar el estado del ecosistema y evaluar los problemas ecológicos dentro del Parque Nacional del Panda Gigante (PNPG), analizamos la sensibilidad ecológica con base en la erosión del agua y del suelo y la desertificación rocosa; los servicios ambientales con base en el suministro de conservación del agua, del agua y del suelo y de la biodiversidad; y la idoneidad de hábitat del panda gigante (Ailuropoda melanoleuca) y de especies simpátricas (takín [Budorcas taxicolor], oso negro asiático [Ursus thibetanus]) derivada del modelo de nichos. A partir de nuestros resultados proponemos enfocarnos en áreas ecológicamente críticas para lograr los objetivos del parque. El hábitat idóneo para los pandas y las especies simpátricas englobó el 62.98% del parque y se ubicó principalmente en las montañas Minshan. Un cuarto del área total (25.67%) albergó áreas importantes para los servicios ambientales. Las áreas ecológicamente sensibles y extremadamente sensibles cubrieron el 88.78% del parque y se distribuyeron en las montañas Minshan y Qionglaishan. Esta cobertura indica que hay bastante hábitat para los pandas y las especies simpátricas pero que los ecosistemas en el PNPG son vulnerables. Por lo tanto, las áreas ecológicamente críticas englobaron todos los hábitats para todas las especies analizadas y todas las áreas importantes y extremadamente importantes para el suministro de servicios ambientales. Las áreas ecológicamente sensibles y extremadamente sensibles englobaron el 15.17% del hábitat del panda, representaron el 16.37% del área del PNPG y se localizaron principalmente en las montañas Minshan. Nuestros resultados indican en dónde se deben enfocar los esfuerzos de conservación dentro del parque y que, si identificamos las áreas ecológicamente críticas, los gestores pueden proporcionar una protección focalizada para el hábitat y los ecosistemas y así proteger efectiva y eficientemente el ecosistema compuesto. Además, nuestro método puede usarse para guiar el desarrollo de nuevos parques nacionales.


大熊猫国家公园能实现物种和生态完整性的多重保护 中国在2021年宣布设立首批5个国家公园, 保护自然生态系统的真实性和完整性是其优先目标, 而生态系统服务和生物多样性水平是关键的评估要素。大熊猫国家公园作为首批唯一以单一物种命名的国家公园, 通过评估其生态系统服务、生态敏感性, 同时结合大熊猫及同域分布物种(羚牛、亚洲黑熊)的栖息地适宜性, 以揭示其国家公园内生态系统的状态及其面临的问题, 明确其生态关键区以实现多重保护的目标。我们发现大熊猫国家公园包含了超过62.98%的大熊猫和同域物种的适宜栖息地, 主要分布在岷山山系;其次, 大熊猫国家公园包含了25.67%的生态系统服务重要区域和高达88.78%的生态敏感区域, 主要分布在岷山山系和邛崃山山系。这表明尽管大熊猫国家公园内包含了大熊猫及同域物种所需的大面积适宜栖息地, 但是其生态系统具有较强的脆弱性。若将同时包含大熊猫及同域物种的适宜栖息地、生态系统服务重要和极重要区、生态敏感和极敏感的区域定义为生态关键区, 其面积占比为16.37%, 覆盖了15.17%的大熊猫栖息地, 主要分布在岷山山系。因此, 基于生态关键区制定新的科学的、针对性的保护措施, 不仅可以更好的来保护野生动物栖息地和应对生态系统的威胁, 而且也有效且高效地保护多重生态系统。.


Asunto(s)
Ecosistema , Ursidae , Animales , Parques Recreativos , Conservación de los Recursos Naturales/métodos , Biodiversidad , China
3.
Front Microbiol ; 13: 1015513, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466630

RESUMEN

To achieve reproduction, male solitary mammals need to locate females using chemical communication with high levels of precision. In the case of giant pandas, the total estrus period of females was usually 15 days each year, however, successful mating activity is finished within 3 days from respective home range. The mating pattern of giant pandas, where multiple males compete for each female requires females employ efficient systems to communicate their estrus phases. To verifying whether the scent secretions of giant pandas changes by gender and estrus progression, the microbiota and compounds in 29 anogenital gland samples from 14 individuals during estrus were analyzed by 16S rRNA sequencing and GC-MS. We show that the microbiota communities covary by gender with 4 particular compounds of scent secretions. Among 597 genera, 34 were identified as biomarkers that could be used to distinguish between different estrus phases. By bacterial-compounds co-analysis, 3 fatty ester acids and squalene compounds covaried with the development of estrus in the bacterial communities of female giant pandas. This study helps clarify how a large, solitary mammal expresses accurate information to improve the likelihood of successful reproduction by changing the composition of microbiota and odor compounds of anogenital glands during estrus.

6.
Sci Rep ; 11(1): 22391, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789821

RESUMEN

Knowledge of energy expenditure informs conservation managers for long term plans for endangered species health and habitat suitability. We measured field metabolic rate (FMR) of free-roaming giant pandas in large enclosures in a nature reserve using the doubly labeled water method. Giant pandas in zoo like enclosures had a similar FMR (14,182 kJ/day) to giant pandas in larger field enclosures (13,280 kJ/day). In winter, giant pandas raised their metabolic rates when living at - 2.4 °C (36,108 kJ/day) indicating that they were below their thermal neutral zone. The lower critical temperature for thermoregulation was about 8.0 °C and the upper critical temperature was about 28 °C. Giant panda FMRs were somewhat lower than active metabolic rates of sloth bears, lower than FMRs of grizzly bears and polar bears and 69 and 81% of predicted values based on a regression of FMR versus body mass of mammals. That is probably due to their lower levels of activity since other bears actively forage for food over a larger home range and pandas often sit in a patch of bamboo and eat bamboo for hours at a time. The low metabolic rates of giant pandas in summer, their inability to acquire fat stores to hibernate in winter, and their ability to raise their metabolic rate to thermoregulate in winter are energetic adaptations related to eating a diet composed almost exclusively of bamboo. Differences in FMR of giant pandas between our study and previous studies (one similar and one lower) appear to be due to differences in activity of the giant pandas in those studies.


Asunto(s)
Adaptación Fisiológica , Metabolismo Energético , Ursidae/fisiología , Factores de Edad , Animales , Estaciones del Año
7.
Sci Rep ; 10(1): 10247, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32581315

RESUMEN

Giant pandas (Ailuropoda melanoleuca) were historically hunted using dogs and are currently threatened by free-roaming dogs and their associated diseases. To better understand the spatial magnitude of this threat, we used a GIS approach to investigate edge effects of dogs on giant panda habitat. We first examined two nature reserves with contrasting free-roaming dog populations: Liziping, with many dogs (~0.44/km2), and Daxiangling, with few dogs (~0.14/km2). Spatial analysis indicated that giant pandas at Liziping (but not Daxiangling) showed a shift in habitat use away from populated areas consistent with a risk response to the foray distance of free-roaming dogs (10.9 km path-distance). Most giant panda locations (86%) from the 2014 census in Liziping were clustered around remote "dog-free zones." Expanding this analysis across the entire giant panda range revealed that 40% of panda habitat is within the foray distance of dogs. Our assessment will inform dog control programs including monitoring, education, veterinary care, and other measures. We recommend that reserves designated for the release of translocated pandas receive priority consideration for dog control efforts. Only by understanding and managing complex interactions between humans, domestic animals, and wild animals can we sustain natural systems in a world increasingly dominated by humans.


Asunto(s)
Perros/fisiología , Ursidae/crecimiento & desarrollo , Animales , China , Conservación de los Recursos Naturales , Ecosistema , Humanos , Análisis Espacial
8.
PLoS One ; 11(8): e0159738, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27532870

RESUMEN

The creation of nature reserves is the most direct way to save endangered species populations and their habitat. Development of the giant panda (Ailuropoda melanoleuca) nature reserve network in China was initiated in the 1960s, though the effort to create new reserves boomed considerably after the year 2000. Given this rapid development of protected areas in panda habitats, and the potential conflicting interests between conservation administrations and local economic development, it is essential to assess the role of new nature reserves in the overall giant panda conservation effort and reserve network. We utilized data from national giant panda surveys conducted in 2000 and 2012 to compare the size, spatial use, and distribution of panda populations, as well as the habitat suitability and connectivity in the Northern Qionglai Mountains between the two survey years. Our results show that although the total giant panda population in the study area did not change remarkably, local changes did occur. Most notably, the population in Wolong Nature Reserve declined by 27.3% (N = 39) and the population in Caopo Nature Reserve increased by 71.4% (N = 29) over the 12-year study period. We also found habitat suitability and availability decreased in both Wolong (12.4%) and Caopo (7.4%), but that the relative density of giant pandas declined (19.2%) and increased (84.6%) at each site, respectively. The distance between centers of high IUA were more distant in 2012 (14.1±1.9km) than that in 2000 (6.1±0.9km; t = -7.4, df = 5, p = 0.001), showing a scattered spatial pattern. Habitat availability decreased by 42% within the corridor between the two reserves, however panda occurrences in the corridor increased 24.6%. Compared to the total number of encounters, the proportion of the corridor increased 45.76%. Our results show the importance and success of the newly established Caopo to the conservation of giant pandas, and how crucial it is to identify and repair reserve corridors. Furthermore, we propose criteria for future nature reserve network management and investment, which is applicable for other endangered species conservation practices.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Especies en Peligro de Extinción , Ursidae , Animales , China , Demografía , Densidad de Población
9.
Am J Primatol ; 77(12): 1263-75, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26375479

RESUMEN

Variation in the quality and availability of food resources can greatly influence the ecology, behavior, and conservation of wild primates. We studied the influence of altitudinal differences in resource availability on diet in wild drill monkeys (Mandrillus leucophaeus poensis) on Bioko Island, Equatorial Guinea. We compared fecal samples (n = 234) collected across three consecutive dry seasons for drills living in lowland (0-300 m asl) forest with nearby (18 km distance) drills living in montane forest (500-1000 m asl) in the Gran Caldera Southern Highlands Scientific Reserve. Lowland forest drills had a frugivorous diet very similar to that reported from studies on nearby mainland drills (M. l. leucophaeus) and mandrills (M. sphinx), with fruits comprising 90% of their dried fecal samples. However drills living in montane forest had a more folivorous diet, with herbaceous pith, leaves and fungi comprising 74% of their dried fecal samples and fruit becoming a minor component (24%). Furthermore, a dietary preference index indicated that the differences in the proportion of fruit and fibrous vegetation in the diets of lowland compared to montane drills was not simply a result of relative availability. Montane drills were actively consuming a higher mass of the available fruits and fibrous vegetation, a condition reflected in the greater mass of their fresh feces. Our results demonstrate the unexpected flexibility and complexity of dietary choices of this endangered species in two adjacent habitat types, a comparison of considerable importance for many other limited-range species faced with habitat loss and climate change.


Asunto(s)
Dieta , Preferencias Alimentarias , Mandrillus/fisiología , Altitud , Animales , Ecosistema , Especies en Peligro de Extinción , Guinea Ecuatorial , Heces , Bosques , Frutas , Hongos , Herbivoria , Hojas de la Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...