Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 15(9)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37766301

RESUMEN

Theodor ("Ted") Otto Diener, the discoverer of viroids, died on 28 March 2023 at his home in Beltsville, Maryland, USA [...].

2.
Virus Res ; 323: 198964, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36223861

RESUMEN

Viroids are small, single-stranded, non-protein coding and circular RNAs able to infect host plants in the absence of any helper virus. They may elicit symptoms in their hosts, but the underlying molecular pathways are only partially known. Here we address the role of post-transcriptional RNA silencing in plant-viroid-interplay, with major emphasis on the involvement of this sequence-specific RNA degradation mechanism in both plant antiviroid defence and viroid pathogenesis. This review is a tribute to the memory of Dr. Ricardo Flores, who largely contributed to elucidate this and other molecular mechanisms involved in plant-viroid interactions.

3.
J Gen Virol ; 102(2)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33331814

RESUMEN

Members of the family Pospiviroidae have single-stranded circular RNA genomes that adopt a rod-like or a quasi-rod-like conformation. These genomes contain a central conserved region that is involved in replication in the nucleus through an asymmetric RNA-RNA rolling-circle mechanism. Members of the family Pospiviroidae lack the hammerhead ribozymes that are typical of viroids classified in the family Avsunviroidae. The family Pospiviroidae includes the genera Apscaviroid, Cocadviroid, Coleviroid, Hostuviroid and Pospiviroid, with >25 species. This is a summary of the ICTV Report on the family Pospiviroidae, which is available at ictv.global/report/pospiviroidae.


Asunto(s)
ARN Viral/genética , Viroides/clasificación , Viroides/genética , Replicación Viral , Genoma Viral , ARN/genética , ARN Catalítico/genética , ARN Circular , Viroides/fisiología
4.
Int J Mol Sci ; 21(19)2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-33036282

RESUMEN

Accidental transmission of hop stunt viroid (HSVd) from grapevine to hop has led to several epidemics of hop stunt disease with convergent evolution of HSVd-g(rape) into HSVd-h(op) containing five mutations. However, the biological function of these five mutations remains unknown. In this study, we compare the biological property of HSVd-g and HSVd-h by bioassay and analyze HSVd-specific small RNA (HSVd-sRNA) using high-throughput sequencing. The bioassay indicated an association of these five mutations with differences in infectivity, replication capacity, and pathogenicity between HSVd-g and HSVd-h, e.g., HSVd-g induced more severe symptoms than HSVd-h in cucumber. Site-directed mutagenesis of HSVd-g showed that the mutation at position 54 increased pathogenicity. HSVd-sRNA analysis of cucumber and hop plants infected with different HSVd variants showed that several sRNA species containing adaptive nucleotides were specifically down-regulated in plants infected with HSVd-h. Several HSVd-sRNAs containing adaptive mutations were predicted to target cucumber genes, but changes in the levels of these genes were not directly correlated with changes in symptom expression. Furthermore, expression levels of two other cucumber genes targeted by HSVd-RNAs, encoding ethylene-responsive transcription factor ERF011, and trihelix transcription factor GTL2, were altered by HSVd infection. The possible relationship between these two genes to HSVd pathogenicity is discussed.


Asunto(s)
Cucumis sativus/virología , Humulus/virología , Mutación , Enfermedades de las Plantas/virología , Virus de Plantas/patogenicidad , ARN Circular , Secuenciación de Nucleótidos de Alto Rendimiento , Virus de Plantas/genética , Análisis de Secuencia de ARN
5.
PLoS Pathog ; 15(12): e1008110, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31790500

RESUMEN

Viroids are small, non-protein-coding RNAs which can induce disease symptoms in a variety of plant species. Potato (Solanum tuberosum L.) is the natural host of Potato spindle tuber viroid (PSTVd) where infection results in stunting, distortion of leaves and tubers and yield loss. Replication of PSTVd is accompanied by the accumulation of viroid-derived small RNAs (sRNAs) proposed to play a central role in disease symptom development. Here we report that PSTVd sRNAs direct RNA silencing in potato against StTCP23, a member of the TCP (teosinte branched1/Cycloidea/Proliferating cell factor) transcription factor family genes that play an important role in plant growth and development as well as hormonal regulation, especially in responses to gibberellic acid (GA). The StTCP23 transcript has 21-nucleotide sequence complementarity in its 3' untranslated region with the virulence-modulating region (VMR) of PSTVd strain RG1, and was downregulated in PSTVd-infected potato plants. Analysis using 3' RNA ligase-mediated rapid amplification of cDNA ends (3' RLM RACE) confirmed cleavage of StTCP23 transcript at the expected sites within the complementarity with VMR-derived sRNAs. Expression of these VMR sRNA sequences as artificial miRNAs (amiRNAs) in transgenic potato plants resulted in phenotypes reminiscent of PSTVd-RG1-infected plants. Furthermore, the severity of the phenotypes displayed was correlated with the level of amiRNA accumulation and the degree of amiRNA-directed down-regulation of StTCP23. In addition, virus-induced gene silencing (VIGS) of StTCP23 in potato also resulted in PSTVd-like phenotypes. Consistent with the function of TCP family genes, amiRNA lines in which StTCP23 expression was silenced showed a decrease in GA levels as well as alterations to the expression of GA biosynthesis and signaling genes previously implicated in tuber development. Application of GA to the amiRNA plants minimized the PSTVd-like phenotypes. Taken together, our results indicate that sRNAs derived from the VMR of PSTVd-RG1 direct silencing of StTCP23 expression, thereby disrupting the signaling pathways regulating GA metabolism and leading to plant stunting and formation of small and spindle-shaped tubers.


Asunto(s)
Genes de Plantas , Enfermedades de las Plantas/virología , Solanum tuberosum/virología , Viroides/patogenicidad , Virulencia/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Interferencia de ARN/fisiología , Virus ARN , ARN Viral , Solanum tuberosum/genética , Factores de Transcripción
6.
J Gen Virol ; 99(5): 611-612, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29580320

RESUMEN

Members of the family Avsunviroidae have a single-stranded circular RNA genome that adopts a rod-like or branched conformation and can form, in the strands of either polarity, hammerhead ribozymes involved in their replication in plastids through a symmetrical RNA-RNA rolling-circle mechanism. These viroids lack the central conserved region typical of members of the family Pospiviroidae. The family Avsunviroidae includes three genera, Avsunviroid, Pelamoviroid and Elaviroid, with a total of four species. This is a summary of the ICTV Report on the taxonomy of the family Avsunviroidae, which is available at http://www.ictv.global/report/avsunviroidae.


Asunto(s)
ARN Viral/genética , Viroides/clasificación , Viroides/genética , Replicación Viral , Replicación del ADN , Genoma Viral , ARN/genética , ARN Catalítico/genética , ARN Circular , Viroides/fisiología
7.
J Virol ; 91(24)2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-28978701

RESUMEN

Potato spindle tuber viroid (PSTVd) is a circular, single-stranded, noncoding RNA plant pathogen that is a useful model for studying the processing of noncoding RNA in eukaryotes. Infective PSTVd circles are replicated via an asymmetric rolling circle mechanism to form linear multimeric RNAs. An endonuclease cleaves these into monomers, and a ligase seals these into mature circles. All eukaryotes may have such enzymes for processing noncoding RNA. As a test, we investigated the processing of three PSTVd RNA constructs in the yeast Saccharomyces cerevisiae Of these, only one form, a construct that adopts a previously described tetraloop-containing conformation (TL), produces circles. TL has 16 nucleotides of the 3' end duplicated at the 5' end and a 3' end produced by self-cleavage of a delta ribozyme. The other two constructs, an exact monomer flanked by ribozymes and a trihelix-forming RNA with requisite 5' and 3' duplications, do not produce circles. The TL circles contain nonnative nucleotides resulting from the 3' end created by the ribozyme and the 5' end created from an endolytic cleavage by yeast at a site distinct from where potato enzymes cut these RNAs. RNAs from all three transcripts are cleaved in places not on path for circle formation, likely representing RNA decay. We propose that these constructs fold into distinct RNA structures that interact differently with host cell RNA metabolism enzymes, resulting in various susceptibilities to degradation versus processing. We conclude that PSTVd RNA is opportunistic and may use different processing pathways in different hosts.IMPORTANCE In higher eukaryotes, the majority of transcribed RNAs do not encode proteins. These noncoding RNAs are responsible for mRNA regulation, control of the expression of regulatory microRNAs, sensing of changes in the environment by use of riboswitches (RNAs that change shape in response to environmental signals), catalysis, and more roles that are still being uncovered. Some of these functions may be remnants from the RNA world and, as such, would be part of the evolutionary past of all forms of modern life. Viroids are noncoding RNAs that can cause disease in plants. Since they encode no proteins, they depend on their own RNA and on host proteins for replication and pathogenicity. It is likely that viroids hijack critical host RNA pathways for processing the host's own noncoding RNA. These pathways are still unknown. Elucidating these pathways should reveal new biological functions of noncoding RNA.


Asunto(s)
ARN Viral/genética , Saccharomyces cerevisiae/genética , Solanum tuberosum/genética , Viroides/genética , Interacciones Huésped-Patógeno/genética , Conformación de Ácido Nucleico , Enfermedades de las Plantas/virología , Tubérculos de la Planta/virología , Estabilidad del ARN , ARN no Traducido/metabolismo , Solanum tuberosum/virología , Replicación Viral
8.
Neuropharmacology ; 125: 80-86, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28673548

RESUMEN

Substantial challenges exist for investigating the cannabinoid receptor type 1 (CB1)-mediated discriminative stimulus effects of the endocannabinoids, 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (anandamide; AEA), compared with exogenous CB1 receptor agonists, such as Δ9-tetrahydrocannabinol (THC) and the synthetic cannabinoid CP55,940. Specifically, each endocannabinoid is rapidly degraded by the respective hydrolytic enzymes, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH). Whereas MAGL inhibitors partially substitute for THC and fully substitute for CP55,940, FAAH inhibitors do not substitute for either drug. Interestingly, combined FAAH-MAGL inhibition results in full THC substitution, and the dual FAAH-MAGL inhibitor SA-57 serves as its own discriminative training stimulus. Because MAGL inhibitors fully substitute for SA-57, we tested whether the selective MAGL inhibitor MJN110 would serve as a training stimulus. Twelve of 13 C57BL/6J mice learned to discriminate MJN110 from vehicle, and the CB1 receptor antagonist rimonabant dose-dependently blocked its discriminative stimulus. CP55,940, SA-57, and another MAGL inhibitor JZL184, fully substituted for MJN110. In contrast, the FAAH inhibitor PF-3845 failed to substitute for the MJN110 discriminative stimulus, but produced a 1.6 (1.1-2.2; 95% confidence interval) leftward shift in the MJN110 dose-response curve. Inhibitors of other relevant enzymes (i.e., ABHD6, COX-2) and nicotine did not engender substitution. Diazepam partially substituted for MJN110, but rimonabant failed to block this partial effect. These findings suggest that MAGL normally throttles 2-AG stimulation of CB1 receptors to a magnitude insufficient to produce cannabimimetic subjective effects. Accordingly, inhibitors of this enzyme may release this endogenous brake producing effects akin to those produced by exogenously administered cannabinoids.


Asunto(s)
Carbamatos/farmacología , Discriminación en Psicología/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Monoacilglicerol Lipasas/antagonistas & inhibidores , Receptor Cannabinoide CB1/metabolismo , Succinimidas/farmacología , Acetamidas/farmacología , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/metabolismo , Animales , Benzodioxoles/farmacología , Moduladores de Receptores de Cannabinoides/farmacología , Ciclohexanoles/farmacología , Ciclooxigenasa 2/metabolismo , Discriminación en Psicología/fisiología , Relación Dosis-Respuesta a Droga , Dronabinol/farmacología , Masculino , Ratones Endogámicos C57BL , Monoacilglicerol Lipasas/metabolismo , Piperidinas/farmacología , Pirazoles/farmacología , Rimonabant
9.
RNA Biol ; 14(3): 317-325, 2017 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-28027000

RESUMEN

Viroids are non-coding single-stranded circular RNA molecules that replicate autonomously in infected host plants causing mild to lethal symptoms. Their genomes contain about 250-400 nucleotides, depending on viroid species. Members of the family Pospiviroidae, like the Potato spindle tuber viroid (PSTVd), replicate via an asymmetric rolling-circle mechanism using the host DNA-dependent RNA-Polymerase II in the nucleus, while members of Avsunviroidae are replicated in a symmetric rolling-circle mechanism probably by the nuclear-encoded polymerase in chloroplasts. Viroids induce the production of viroid-specific small RNAs (vsRNA) that can direct (post-)transcriptional gene silencing against host transcripts or genomic sequences. Here, we used deep-sequencing to analyze vsRNAs from plants infected with different PSTVd variants to elucidate the PSTVd quasipecies evolved during infection. We recovered several novel as well as previously known PSTVd variants that were obviously competent in replication and identified common strand-specific mutations. The calculated mean error rate per nucleotide position was less than [Formula: see text], quite comparable to the value of [Formula: see text] reported for a member of Avsunviroidae. The resulting error threshold allows the synthesis of longer-than-unit-length replication intermediates as required by the asymmetric rolling-circle mechanism of members of Pospiviroidae.


Asunto(s)
Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Virus Reordenados/genética , Viroides/genética , Mutación , ARN Viral/genética , Replicación Viral
10.
Planta ; 245(1): 193-205, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27714454

RESUMEN

MAIN CONCLUSION: The plant-specific 4/1 protein interacts, both in yeast two-hybrid system and in vitro, and co-localizes in plant cells with plant BAP-like protein, the orthologue of human protein BAP31. In yeast two-hybrid system, we identified a number of Nicotiana benthamiana protein interactors of Nt-4/1, the protein known to affect systemic transport of potato spindle tuber viroid. For one of these interactors, an orthologue of human B-cell receptor-associated protein 31 (BAP31) termed plant BAP-like protein (PBL), the ability to interact with Nt-4/1 was studied in greater detail. Analyses of purified proteins expressed in bacterial cells carried out in vitro with the surface plasmon resonance (SPR) spectroscopy revealed that the N. tabacum PBL (NtPBL) was able to interact with Nt-4/1 with high-affinity, and that their complex can form at physiologically relevant concentrations of both proteins. Subcellular localization studies of 4/1-GFP and NtPBL-mRFP transiently co-expressed in plant cells revealed the co-localization of the two fusion proteins in endoplasmic reticulum-associated bodies, suggesting their interaction in vivo. The N-terminal region of the Nt-4/1 protein was found to be required for the specific subcellular targeting of the protein, presumably due to a predicted amphipathic helix mediating association of the Nt-4/1 protein with cell membranes. Additionally, this region was found to contain a trans-activator domain responsible for the Nt-4/1 ability to activate transcription of a reporter gene in yeast.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Nicotiana/metabolismo , Péptidos/metabolismo , Proteínas de Plantas/metabolismo , Homología de Secuencia de Aminoácido , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Humanos , Cinética , Epidermis de la Planta/citología , Proteínas de Plantas/química , Unión Proteica , Proteínas Recombinantes de Fusión/metabolismo , Especificidad de la Especie , Fracciones Subcelulares/metabolismo , Resonancia por Plasmón de Superficie , Activación Transcripcional/genética , Técnicas del Sistema de Dos Híbridos
11.
Biochimie ; 132: 28-37, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27770627

RESUMEN

Human B-cell receptor-associated protein BAP31 (HsBAP31) is the endoplasmic reticulum-resident protein involved in protein sorting and transport as well as pro-apoptotic signaling. Plant orthologs of HsBAP31 termed 'plant BAP-like proteins' (PBL proteins) have thus far remained unstudied. Recently, the PBL protein from Nicotiana tabacum (NtPBL) was identified as an interactor of Nt-4/1, a plant protein known to interact with plant virus movement proteins and affect the long-distance transport of potato spindle tuber viroid (PSTVd) via the phloem. Here, we have compared the sequences of PBL proteins and studied the biochemical properties of NtPBL. Analysis of a number of fully sequenced plant genomes revealed that PBL-encoding genes represent a small multigene family with up to six members per genome. Two conserved motifs were identified in the C-terminal region of PBL proteins. The NtPBL C-terminal hydrophilic region (NtPBL-C) was expressed in bacterial cells, purified, and used for analysis of its RNA binding properties in vitro. In gel shift experiments, NtPBL-C was found to bind several tested RNAs, showing the most efficient binding to microRNA precursors (pre-miRNA) and less efficient interaction with PSTVd. Mutational analysis suggested that NtPBL-C has a composite RNA-binding site, with two conserved lysine residues in the most C-terminal protein region being involved in binding of pre-miRNA but not PSTVd RNA. Virus-mediated transient expression of NtPBL-C in plants resulted in stunting and leaf malformation, developmental abnormalities similar to those described previously for blockage of miRNA biogenesis/function. We hypothesize that the NtPBL protein represents a previously undiscovered component of the miRNA pathway.


Asunto(s)
Proteínas de la Membrana/genética , Nicotiana/genética , Filogenia , Proteínas de Plantas/genética , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Genoma de Planta/genética , Humanos , Proteínas de la Membrana/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Familia de Multigenes , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/virología , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Virus de Plantas/genética , Virus de Plantas/fisiología , Unión Proteica , ARN/genética , ARN/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Solanum tuberosum/virología , Nicotiana/metabolismo , Nicotiana/virología , Viroides/genética , Viroides/fisiología
12.
J Pharmacol Exp Ther ; 358(2): 306-14, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27307500

RESUMEN

Whereas the inhibition of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), the respective major hydrolytic enzymes of N-arachidonoyl ethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), elicits no or partial substitution for Δ(9)-tetrahydrocannabinol (THC) in drug-discrimination procedures, combined inhibition of both enzymes fully substitutes for THC, as well as produces a constellation of cannabimimetic effects. The present study tested whether C57BL/6J mice would learn to discriminate the dual FAAH-MAGL inhibitor SA-57 (4-[2-(4-chlorophenyl)ethyl]-1-piperidinecarboxylic acid 2-(methylamino)-2-oxoethyl ester) from vehicle in the drug-discrimination paradigm. In initial experiments, 10 mg/kg SA-57 fully substituted for CP55,940 ((-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol), a high-efficacy CB1 receptor agonist in C57BL/6J mice and for AEA in FAAH (-/-) mice. Most (i.e., 23 of 24) subjects achieved criteria for discriminating SA-57 (10 mg/kg) from vehicle within 40 sessions, with full generalization occurring 1 to 2 hours postinjection. CP55,940, the dual FAAH-MAGL inhibitor JZL195 (4-​nitrophenyl 4-​(3-​phenoxybenzyl)piperazine-​1-​carboxylate), and the MAGL inhibitors MJN110 (2,5-dioxopyrrolidin-1-yl 4-(bis(4-chlorophenyl)methyl)piperazine-1-carboxylate) and JZL184 (4-[Bis(1,3-benzodioxol-5-yl)hydroxymethyl]-1-piperidinecarboxylic acid 4-nitrophenyl ester) fully substituted for SA-57. Although the FAAH inhibitors PF-3845 ((N-3-pyridinyl-4-[[3-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenyl]methyl]-1-piperidinecarboxamide) and URB597 (cyclohexylcarbamic acid 3'-(aminocarbonyl)-[1,1'-biphenyl]-3-yl ester) did not substitute for SA-57, PF-3845 produced a 2-fold leftward shift in the MJN110 substitution dose-response curve. In addition, the CB1 receptor antagonist rimonabant blocked the generalization of SA-57, as well as substitution of CP55,940, JZL195, MJN110, and JZL184. These findings suggest that MAGL inhibition plays a major role in the CB1 receptor-mediated SA-57 training dose, which is further augmented by FAAH inhibition.


Asunto(s)
Acetamidas/farmacología , Amidohidrolasas/antagonistas & inhibidores , Carbamatos/farmacología , Discriminación en Psicología/efectos de los fármacos , Endocannabinoides/metabolismo , Inhibidores Enzimáticos/farmacología , Monoacilglicerol Lipasas/antagonistas & inhibidores , Amidohidrolasas/metabolismo , Animales , Ciclohexanoles/farmacología , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Ratones Endogámicos C57BL , Monoacilglicerol Lipasas/metabolismo
13.
Curr Opin Virol ; 17: 87-94, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26897654

RESUMEN

The viroids of plants are the simplest known infectious genetic elements. They have RNA genomes of up to 400 nucleotides in length and no protein encoding capacity. Hepatitis delta virus (HDV), an infectious agent found only in humans co-infected with hepatitis B virus (HBV), is just slightly more complex, with an RNA genome of about 1700 nucleotides, and the ability to express just one small protein. Viroid and HDV RNAs share several features that include circular structure, compact folding, and replication via a rolling-circle mechanism. Both agents were detected because of their obvious pathogenic effects. Their simplicity demands a greater need than conventional RNA or DNA viruses to redirect host components for facilitating their infectious cycle, a need that directly and indirectly incites pathogenic effects. The mechanisms by which these pathogenic effects are produced are the topic of this review. In this context, RNA silencing mediates certain aspects of viroid pathogenesis.


Asunto(s)
Hepatitis D/virología , Virus de la Hepatitis Delta/patogenicidad , Plantas/virología , ARN Viral/genética , Viroides/patogenicidad , Animales , Coinfección/virología , Hepatitis B/virología , Virus de la Hepatitis B/fisiología , Virus de la Hepatitis Delta/genética , Virus de la Hepatitis Delta/fisiología , Interacciones Huésped-Patógeno , Humanos , Enfermedades de las Plantas/virología , Primates , Interferencia de ARN , ARN Viral/metabolismo , Viroides/genética , Viroides/fisiología , Replicación Viral
14.
Neuropsychopharmacology ; 40(13): 2948-59, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26052038

RESUMEN

The CB1 receptor represents a promising target for the treatment of several disorders including pain-related disease states. However, therapeutic applications of Δ(9)-tetrahydrocannabinol and other CB1 orthosteric receptor agonists remain limited because of psychoactive side effects. Positive allosteric modulators (PAMs) offer an alternative approach to enhance CB1 receptor function for therapeutic gain with the promise of reduced side effects. Here we describe the development of the novel synthetic CB1 PAM, 6-methyl-3-(2-nitro-1-(thiophen-2-yl)ethyl)-2-phenyl-1H-indole (ZCZ011), which augments the in vitro and in vivo pharmacological actions of the CB1 orthosteric agonists CP55,940 and N-arachidonoylethanolamine (AEA). ZCZ011 potentiated binding of [(3)H]CP55,940 to the CB1 receptor as well as enhancing AEA-stimulated [(35)S]GTPγS binding in mouse brain membranes and ß-arrestin recruitment and ERK phosphorylation in hCB1 cells. In the whole animal, ZCZ011 is brain penetrant, increased the potency of these orthosteric agonists in mouse behavioral assays indicative of cannabimimetic activity, including antinociception, hypothermia, catalepsy, locomotor activity, and in the drug discrimination paradigm. Administration of ZCZ011 alone was devoid of activity in these assays and did not produce a conditioned place preference or aversion, but elicited CB1 receptor-mediated antinociceptive effects in the chronic constriction nerve injury model of neuropathic pain and carrageenan model of inflammatory pain. These data suggest that ZCZ011 acts as a CB1 PAM and provide the first proof of principle that CB1 PAMs offer a promising strategy to treat neuropathic and inflammatory pain with minimal or no cannabimimetic side effects.


Asunto(s)
Analgésicos no Narcóticos/farmacología , Moduladores de Receptores de Cannabinoides/farmacología , Indoles/farmacología , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Receptor Cannabinoide CB1/metabolismo , Tiofenos/farmacología , Regulación Alostérica , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Analgésicos no Narcóticos/efectos adversos , Analgésicos no Narcóticos/farmacocinética , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células CHO , Moduladores de Receptores de Cannabinoides/efectos adversos , Moduladores de Receptores de Cannabinoides/farmacocinética , Carragenina , Cricetulus , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Humanos , Indoles/efectos adversos , Indoles/farmacocinética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Tiofenos/efectos adversos , Tiofenos/farmacocinética
15.
Gene ; 564(2): 197-205, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25862922

RESUMEN

Viroids are small, covalently closed, circular non-coding RNA pathogens of flowering plants. It is proposed that the symptoms of viroid pathogenesis result from a direct interaction between the viroid genomic RNA and unknown host plant factors. Using a comparative genomic approach we took advantage of the detailed annotation of the Arabidopsis thaliana (Arabidopsis) genome to identify sequence homologies between putative viroid-derived small RNAs (vd-sRNAs) and coding regions in the plant genome. A pool of sequence homologies among 29 species of the Pospiviroidae family and the Arabidopsis genome was analyzed. Using this strategy we identified putative host gene targets that may be involved in symptom expression in viroid-infected plants. In this communication, we report the in silico prediction and the experimental validation of pospiviroid-derived sRNAs conserved in the lower strand of the pathogenicity domain of seven viroid species infecting tomato; those vd-sRNAs targeted for cleavage the host mRNA encoding a conserved tomato WD40-repeat protein (SolWD40-repeat; SGN_U563134). Analysis of SolWD40-repeat expression indicated that this gene is down-regulated in tomato plants infected with tomato planta macho viroid (TPMVd). Furthermore, 5' RLM-RACE revealed that the SolWD40-repeat mRNA is cleaved at the predicted target site showing complementarity to a corresponding TPMVd-sRNA identified in silico. Our approach proved to be useful for the identification of natural host genes containing sequence homologies with segments of the Pospiviroidae genome. Using this strategy we identified a functionally conserved gene in Arabidopsis and tomato, whose expression was modified during viroid infection in the host genome; regulation of this gene expression could be guided by vd-sRNA:mRNA complementarity, suggesting that the comparison of the Arabidopsis genome to viroid sequences could lead to the identification of unexpected interactions between viroid RNAs and their host.


Asunto(s)
Enfermedades de las Plantas/virología , Solanum lycopersicum , Viroides/genética , Arabidopsis/genética , Arabidopsis/virología , Secuencia de Bases , Datos de Secuencia Molecular , Enfermedades de las Plantas/genética
16.
J Pharmacol Exp Ther ; 352(2): 195-207, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25398241

RESUMEN

A growing body of evidence implicates endogenous cannabinoids as modulators of the mesolimbic dopamine system and motivated behavior. Paradoxically, the reinforcing effects of Δ(9)-tetrahydrocannabinol (THC), the primary psychoactive constituent of cannabis, have been difficult to detect in preclinical rodent models. In this study, we investigated the impact of THC and inhibitors of the endocannabinoid hydrolytic enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) on operant responding for electrical stimulation of the medial forebrain bundle [intracranial self-stimulation (ICSS)], which is known to activate the mesolimbic dopamine system. These drugs were also tested in assays of operant responding for food reinforcement and spontaneous locomotor activity. THC and the MAGL inhibitor JZL184 (4-[bis(1,3-benzodioxol-5-yl)hydroxymethyl]-1-piperidinecarboxylic acid 4-nitrophenyl ester) attenuated operant responding for ICSS and food, and also reduced spontaneous locomotor activity. In contrast, the FAAH inhibitor PF-3845 (N-3-pyridinyl-4-[[3-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenyl]methyl]-1-piperidinecarboxamide) was largely without effect in these assays. Consistent with previous studies showing that combined inhibition of FAAH and MAGL produces a substantially greater cannabimimetic profile than single enzyme inhibition, the dual FAAH-MAGL inhibitor SA-57 (4-[2-(4-chlorophenyl)ethyl]-1-piperidinecarboxylic acid 2-(methylamino)-2-oxoethyl ester) produced a similar magnitude of ICSS depression as that produced by THC. ICSS attenuation by JZL184 was associated with increased brain levels of 2-arachidonoylglycerol (2-AG), whereas peak effects of SA-57 were associated with increased levels of both N-arachidonoylethanolamine (anandamide) and 2-AG. The cannabinoid receptor type 1 receptor antagonist rimonabant, but not the cannabinoid receptor type 2 receptor antagonist SR144528, blocked the attenuating effects of THC, JZL184, and SA-57 on ICSS. Thus, THC, MAGL inhibition, and dual FAAH-MAGL inhibition not only reduce ICSS, but also decrease other reinforced and nonreinforced behaviors.


Asunto(s)
Dronabinol/farmacología , Endocannabinoides/metabolismo , Inhibidores Enzimáticos/farmacología , Haz Prosencefálico Medial/efectos de los fármacos , Refuerzo en Psicología , Autoestimulación , Amidohidrolasas/antagonistas & inhibidores , Animales , Conducta Animal/efectos de los fármacos , Benzodioxoles/farmacología , Compuestos de Bifenilo/farmacología , Condicionamiento Operante/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Masculino , Haz Prosencefálico Medial/enzimología , Haz Prosencefálico Medial/metabolismo , Ratones Endogámicos C57BL , Monoacilglicerol Lipasas/antagonistas & inhibidores , Actividad Motora/efectos de los fármacos , Piperidinas/farmacología , Compuestos de Piridinio/farmacología
17.
Front Plant Sci ; 5: 26, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24611067

RESUMEN

Originally isolated as a result of its ability to interact with the movement protein of Tomato spotted wilt virus in a yeast two-hybrid system, the 4/1 protein is proving to be an excellent tool for studying intracellular protein trafficking and intercellular communication. Expression of 4/1 in vivo is tightly regulated, first appearing in the veins of the cotyledon and later in the vasculature of the leaf and stem in association with the xylem parenchyma and phloem parenchyma. Structural studies indicate that 4/1 proteins contain as many as five coiled-coil (CC) domains; indeed, the highest level of sequence identity among 4/1 proteins involves their C-terminal CC domains, suggesting that protein-protein interaction is important for biological function. Recent data predict that the tertiary structure of this C-terminal CC domain is strikingly similar to that of yeast protein She2p; furthermore, like She2p, 4/1 protein exhibits RNA-binding activity, and mutational analysis has shown that the C-terminal CC domain is responsible for RNA binding. The 4/1 protein contains a nuclear export signal. Additional microscopy studies involving leptomycin and computer prediction suggest the presence of a nuclear localization signal as well.

18.
Plant Signal Behav ; 8(10): doi: 10.4161/psb.25784, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23887490

RESUMEN

The Arabidopsis thaliana 4/1 (At-4/1) protein has a highly α-helical structure with potential to interact both with itself and other protein ligands, including the movement proteins of some plant viruses; the Nicotiana tabacum ortholog (Nt-4/1) has similar structure. Here we describe localization of GUS expression in transgenic N. tabacum seedlings under control of the Nt-4/1 promoter, which indicates that transcription is associated with the veins at certain developmental stages, and especially in the hypocotyl. Viroid accumulation and movement was altered in plants in which 4/1 expression was reduced by virus-induced gene silencing. These localization studies support a role of 4/1 in signaling in the vasculature,including mobility of pathogen-related and cellular RNAs.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Nicotiana/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Transporte Biológico/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas , Nicotiana/genética
19.
Neuropsychopharmacology ; 38(6): 1039-49, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23303065

RESUMEN

Inhibition of the endocannabinoid catabolic enzymes, monoacylglycerol lipase (MAGL) or fatty acid amide hydrolase (FAAH) attenuates naloxone-precipitated opioid withdrawal signs in mice via activation of CB1 receptors. Complete FAAH inhibition blocks only a subset of withdrawal signs, whereas complete MAGL inhibition elicits enhanced antiwithdrawal efficacy, but is accompanied with some cannabimimetic side effects. Thus, the primary objective of the present study was to determine whether combined, full FAAH inhibition and partial MAGL represents an optimal strategy to reduce opioid withdrawal. To test this hypothesis, we examined whether combined administration of high-dose of the FAAH inhibitor PF-3845 and low-dose of the MAGL inhibitor JZL184, as well as the novel dual FAAH-MAGL inhibitor SA-57, which is 100-fold more potent in inhibiting FAAH than MAGL, would prevent spontaneous withdrawal in morphine-dependent mice, a model with greater face validity than precipitating withdrawal with µ-opioid receptor antagonists. Strikingly, a combination of low-dose JZL184 and high-dose PF-3845 as well as the dual inhibitor SA-57 reduced all abrupt withdrawal signs (ie, platform jumping, paw flutters, head shakes, diarrhea, and total body weight loss), but did not elicit any cannabimimetic side effects. In addition, JZL184 or PF-3845 blocked naloxone-precipitated hypersecretion in morphine-dependent small intestinal tissue. Collectively, these results are the first to show that endocannabinoid catabolic enzyme inhibitors reduce abrupt withdrawal in morpine-dependent mice and are effective in a novel in vitro model of opioid withdrawal. More generally, these findings support the idea that joint MAGL and FAAH inhibition represents a promising approach for the treatment of opioid dependence.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Endocannabinoides/antagonistas & inhibidores , Monoacilglicerol Lipasas/antagonistas & inhibidores , Dependencia de Morfina/enzimología , Morfina/administración & dosificación , Síndrome de Abstinencia a Sustancias/enzimología , Amidohidrolasas/metabolismo , Animales , Benzodioxoles/farmacología , Benzodioxoles/uso terapéutico , Endocannabinoides/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Monoacilglicerol Lipasas/metabolismo , Dependencia de Morfina/tratamiento farmacológico , Piperidinas/farmacología , Piperidinas/uso terapéutico , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico
20.
Methods Mol Biol ; 894: 253-71, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22678585

RESUMEN

When Diener discovered Potato spindle tuber viroid in 1971 (Diener, Virology 45:411-428, 1971), only a limited number of techniques were available for plant virus detection and purification. Biological assays using indicator hosts showing characteristic symptoms of infection and able to support high levels of viroid replication played a critical role in viroid detection and characterization. Polyacrylamide gel electrophoresis (PAGE) was the first molecular technique to be used for the rapid (2-3 days) identification of viroid-infected plants. Because it is the only diagnostic method that is sequence-independent, PAGE under denaturing conditions continues to play a key role in the identification of new viroids. Starting in the early 1980s, dot blot hybridization began to replace PAGE for routine viroid diagnosis. The first diagnostic protocols based on reverse transcription-polymerase chain reaction (RT-PCR) appeared approximately 10 years later, and much effort has subsequently been devoted to simplifying the sample preparation procedure and identifying group-specific primer pairs. This chapter describes four simple, easy-to-follow protocols-two involving PAGE and two others based on enzymatic amplification of viroid cDNAs-that currently play key roles in viroid discovery and characterization.


Asunto(s)
Enfermedades de las Plantas/virología , Plantas/virología , Viroides , Electroforesis en Gel de Poliacrilamida , Enfermedades de las Plantas/genética , Virus de Plantas/química , Virus de Plantas/genética , Virus de Plantas/aislamiento & purificación , Plantas/genética , ARN Viral/genética , ARN Viral/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Viroides/química , Viroides/genética , Viroides/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...