Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Biomed Res Int ; 2024: 4119960, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38559901

RESUMEN

Background: Lactobacillus acidophilus is lactic acid bacteria that produce bacteriocins. Bacteriocins are antimicrobial peptides or proteins that exhibit activity against closely related bacteria. The aim of this study was to determine the effect of L. acidophilus ATCC 4356 bacteriocin against Staphylococcus aureus. Material and Methods. We used four different phenotypic methods for antimicrobial activities against two standard strains: methicillin-resistant S. aureus (MRSA) ATCC 33591 and methicillin-susceptible S. aureus (MSSA) ATCC 25923. The methods were (1) agar well diffusion, (2) overlay soft agar, (3) paper disk, and (4) modification of punch hole. The ammonium sulfate method was used to concentrate crude bacteriocin, and ultrafiltration and dialysis tubes were used to remove ammonium sulfate from the bacteriocins. Each method was repeated in triplicate. Result: L. acidophilus ATCC 4356 showed antimicrobial activity against both MRSA and MSSA standard strains only by the overlay soft agar method and not by the agar well diffusion, punch hole modification, and paper disk methods. No antimicrobial effects were observed in crude bacteriocins concentrated. Conclusion: The growth inhibition of S. aureus in overlay soft agar method may be due to the production of bacteriocin-like substances. The overlay soft agar method is a qualitative test, so there is a need for further study to optimize the conditions for the production of bacteriocin-like substances in the culture supernatant and precise comparison between the inhibitory activity and pheromone secretion of different strains.


Asunto(s)
Antiinfecciosos , Bacteriocinas , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , Bacteriocinas/metabolismo , Lactobacillus acidophilus , Agar/metabolismo , Sulfato de Amonio/metabolismo , Sulfato de Amonio/farmacología , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Antibacterianos/metabolismo
2.
Iran Biomed J ; 27(5): 257-68, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37873638

RESUMEN

Background: Anaerobes are the causative agents of many wound infections. B. fragilis is the most prevalent endogenous anaerobic bacterium causes a wide range of diseases, including wound infections. This study aimed to assess the antibacterial effect of mouse adipocyte derived-mesenchymal stem cell (AD-MSCs) encapsulated in collagen-fibrin (CF) hydrogel scaffolds on B. fragilis wound infection in an animal model. Methods: Stem cells were extracted from mouse adipose tissue and confirmed by surface markers using flow cytometry analysis. The possibility of differentiation of stem cells into osteoblast and adipocyte cells was also assessed. The extracted stem cells were encapsulated in the CF scaffold. B. fragilis wound infection was induced in rats, and then following 24 h, collagen and fibrin-encapsulated mesenchymal stem cells (MSCs) were applied to dress the wound. One week later, a standard colony count test monitored the bacterial load in the infected rats. Results: MSCs were characterized as positive for CD44, CD90, and CD105 markers and negative for CD34, which were able to differentiate into osteoblast and adipocyte cells. AD-MSCs encapsulated with collagen and fibrin scaffolds showed ameliorating effects on B. fragilis wound infection. Additionally, AD-MSCs with a collagen scaffold (54 CFU/g) indicated a greater effect on wound infection than AD-MSCs with a fibrin scaffold (97 CFU/g). The combined CF scaffold demonstrated the highest reduction in colony count (the bacteria load down to 29 CFU/g) in the wound infection. Conclusion: Our findings reveal that the use of collagen and fibrin scaffold in combination with mouse AD-MSCs is a promising alternative treatment for B. fragilis.


Asunto(s)
Antiinfecciosos , Infecciones Bacterianas , Células Madre Mesenquimatosas , Infección de Heridas , Ratones , Ratas , Animales , Bacteroides fragilis , Fibrina/metabolismo , Hidrogeles , Composición de Base , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Colágeno/metabolismo , Diferenciación Celular , Infección de Heridas/metabolismo , Antiinfecciosos/metabolismo , Andamios del Tejido
3.
Int J Microbiol ; 2023: 8873948, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37692920

RESUMEN

Objectives: Today, Stenotrophomonas maltophilia (S. maltophilia) is a major opportunistic pathogen among hospitalized or immunocompromised patients. Antibiotic-resistant clinical isolates are increasing in several parts of the world. Various antibiotic-resistance and biofilm-forming genes are identified in this bacterium. Its capacity to form biofilms is an important virulence factor that may impact antibiotic-resistance patterns. In the current study, we evaluated the biofilm-formation capacity, antibiotic-resistance profile, and prevalence of biofilm-forming genes as well as antibiotic resistance genes among S. maltophilia isolates. Materials and Methods: In this cross-sectional study, 94 clinical S. maltophilia isolates were recovered from four tertiary-care hospitals in Iran between 2021 and 2022. The presence of the selected antibiotic-resistance genes and biofilm-forming genes was examined by polymerase chain reaction (PCR). The ability of biofilm formation was examined by microtiter plate assay. The Kirby-Bauer disc diffusion method was used to evaluate the trimethoprim-sulfamethoxazole (TMP-SMX), levofloxacin, and minocycline resistance. Results: S. maltophilia is mainly isolated from bloodstream infections. Notably, 98.93% of isolates were biofilm producers, of which 19.35%, 60.22%, and 20.43% produced strong, moderate, and weak biofilm, respectively. The frequency of biofilm genes was 100%, 97.88%, 96.80%, and 75.53% for spgM, rmlA, smf-1, and rpfF, respectively. Isolates with the genotype of smf-1+/rmlA+/spgM+/rpfF+ were mostly strong biofilm producers. Among the antibiotic-resistance genes, the Smqnr, L1, and sul1 had the highest prevalence (76.59%, 72.34%, and 64.89), respectively. Antimicrobial susceptibility evaluation showed 1.06%, 3.19%, and 6.3% resistance to minocycline, TMP-SMX, and levofloxacin. Conclusion: The results of the current study demonstrated that S. maltophilia isolates differ in biofilm-forming ability. Moreover, smf-1, rmlA, and spgM genes were presented in all strong biofilm producers. Although the overall resistance rate to the evaluated antibiotics was high, there was no statistically significant relation between antibiotic resistance and the type of biofilm.

4.
Health Sci Rep ; 6(8): e1469, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37547361

RESUMEN

Background and Aims: The present study aimed to review probiotics' clinical efficacy in preventing infectious diseases among hospitalized patients in ICU and non-ICU wards. Methods: A search of Medline, EMBASE, The Cochrane Library, Science Direct, Open Grey, and Google Scholar was conducted for eligible publications from 2002 to 2020 following the requirements outlined in the PRISMA guideline. The search strategy was based on the combination of the following terms: "probiotics," "prebiotics," "synbiotics," and "cross-infection." The logical operators "AND" (or the equivalent operator for the databases) and "OR" (e.g., probiotics OR prebiotics OR synbiotics) were used. Results: The results indicated that the probiotic consumption caused a significant reduction in antibiotic-associated diarrhea (AAD) and Clostridioides difficile infection (CDI) in 2/8 randomized clinical trials (RCTs) investigating AAD/CDI. Also, 5/12 clinical trials highlighted the considerable effects of probiotics on the reduction or prevention of ventilator associated pneumoniae (VAP), so the mean prevalence of VAP was lower in the probiotic group than in the placebo group. The total rate of nosocomial infections among preterm infants was nonsignificantly higher in the probiotic group compared to the control group. Conclusion: This systematic review shows that the administration of probiotics has moderate preventive or mitigating effects on the occurrence of VAP in ICU patients, CDI, AAD, and nosocomial infections among children. Consequently, applying antibiotics along with the proper probiotic species can be advantageous.

5.
Adv Biomed Res ; 12: 94, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37288011

RESUMEN

Background: Bacterial virulence factors may be influenced by sub-minimum inhibitory concentrations (sub-MICs) of antibiotics. The main purpose of this study was to investigate the effects of gentamicin at sub-MICs (0.5 MIC and 0.25 MIC) on alginate production of clinical isolates of Pseudomonas aeruginosa. Materials and Methods: The minimum inhibitory concentrations of gentamicin against 88 clinical isolates of P. aeruginosa were determined using the broth microdilution method. Alginate production of the isolates in the absence and presence of gentamicin at sub-MICs was assessed by the carbazole method. The presence of alginate in clinical isolates was confirmed by the detection of alginate genes (algD and algU) using the PCR method. Results: All the isolates had the ability of alginate production and were positive for algD and algU genes. sub-MICs of gentamicin significantly increased alginate production of 34 isolates (38.6%). On the other hand, in 49 isolates (55.7%), alginate production was significantly increased after treatment with sub-MICs of gentamicin. In five isolates (5.7%), the alginate production was reduced in exposure to 0.5 MIC of gentamicin while it was increased by gentamicin at 0.25 MIC. Conclusion: This study showed different effects of gentamicin at sub-MICs on the alginate production of clinical isolates of P. aeruginosa. Further research is highly recommended to understand the mechanism of different responses of P. aeruginosa isolates to the exposure of sub-MICs of gentamicin.

6.
Adv Biomed Res ; 12: 50, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37057221

RESUMEN

Background: Biofilm production is an important virulence factor in Staphylococcus aureus. Most of the infections associated with biofilms of this bacterium are very difficult to treat using antibiotics. The present research studied the effects of the two probiotic Lactobacillus species L. casei and L. rhamnosus on S. aureus biofilm. Materials and Methods: Cell-free supernatant (CFS) extracts of L. casei ATCC 39392 and L. rhamnosus ATCC 7469 culture were prepared. The effects of sub-minimum inhibitory concentrations of the CFS extracts on cell surface hydrophobicity (CSH), initial attachment, biofilm formation, and their ability in eradicating S. aureus ATCC 33591 biofilms were assessed. In addition, the effects of CFS extracts on expression of the genes involved in formation of S. aureus biofilms (cidA, hld, sarA, icaA, and icaR) were also evaluated through real-time polymerase chain reaction. Results: CFSs of both Lactobacillus spp. significantly reduced CSH, initial attachment, and biofilm formation and eradicated the biofilms. The above findings were supported by scanning electron microscopy results. These two Lactobacillus CFSs significantly changed the expression of all studied biofilm-related genes. Expression levels of cidA, hld, and icaR genes significantly increased by 4.4, 2.3, and 4.76 fold, respectively, but sarA and icaA genes were significantly downregulated by 3.12 and 2.3 fold. Conclusion: The results indicated that CFS extracts of L. casei and L. rhamnosus had desirable antagonistic and anti-biofilm effects against S. aureus. Consequently, carrying out further research enables us to prepare pharmaceuticals from these CFSs in order to prevent and treat infections caused by S. aureus biofilms.

7.
Sci Rep ; 12(1): 22324, 2022 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-36566282

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen considered a common cause of nosocomial infection with high morbidity and mortality in burn patients. Immunoprophylaxis techniques may lower the mortality rate of patients with burn wounds infected by P. aeruginosa; consequently, this may be an efficient strategy to manage infections caused by this bacterium. Several pathogenic Gram-negative bacteria like P. aeruginosa release outer membrane vesicles (OMVs), and structurally OMV consists of several antigenic components capable of generating a wide range of immune responses. Here, we evaluated the immunogenicity and efficacy of P. aeruginosa PA-OMVs (PA-OMVs) conjugated with the diphtheria toxoid (DT) formulated with alum adjuvant (PA-OMVs-DT + adj) in a mice model of burn wound infection. ELISA results showed that in the group of mice immunized with PA-OMVs-DT + adj conjugated, there was a significant increase in specific antibodies titer compared to non-conjugated PA-OMVs or control groups. In addition, the vaccination of mice with PA-OMVs-DT + adj conjugated generated greater protective effectiveness, as seen by lower bacterial loads, and eightfold decreased inflammatory cell infiltration with less tissue damage in the mice burn model compared to the control group. The opsonophagocytic killing results confirmed that humoral immune response might be critical for PA-OMVs mediated protection. These findings suggest that PA-OMV-DT conjugated might be used as a new vaccine against P. aeruginosa in burn wound infection.


Asunto(s)
Quemaduras , Toxoide Diftérico , Vacunas contra la Infección por Pseudomonas , Pseudomonas aeruginosa , Infección de Heridas , Animales , Ratones , Proteínas de la Membrana Bacteriana Externa/inmunología , Quemaduras/microbiología , Toxoide Diftérico/inmunología , Pseudomonas aeruginosa/inmunología , Infección de Heridas/microbiología , Infección de Heridas/prevención & control , Vacunas contra la Infección por Pseudomonas/inmunología
8.
Sci Rep ; 12(1): 19909, 2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36402866

RESUMEN

Acinetobacter baumannii is a multi-drug resistant pathogen with the ability to switch between planktonic and biofilm phenotypes. Although there is no vaccine against A. baumannii infections, many attempts have been made to develop vaccines using planktonic or biofilm antigens. To cover the different phenotypes of A. baumannii during growth and attachment, we combined planktonic upregulated antigens of iron receptors with biofilm upregulated antigens of pilus rods and evaluated immune responses and protective efficacies of the combined vaccine using lethal and sub-lethal murine sepsis models. The results showed that the combined vaccine elicited high IgG antibody titers and conferred protection against lethal doses of two Carbapenem-resistant high adherent A. baumannii strains. Complete bacterial clearance from all the affected tissues of the mice challenged with A. baumannii was an excellent achievement with our quadrivalent immunogen. These results demonstrate both planktonic and biofilm antigens are important during antigen selection for vaccine design.


Asunto(s)
Acinetobacter baumannii , Ratones , Animales , Acinetobacter baumannii/genética , Plancton , Factores de Virulencia , Biopelículas , Vacunación , Carbapenémicos/farmacología , Vacunas Combinadas
9.
Front Med (Lausanne) ; 9: 961027, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36111104

RESUMEN

Recent evidence proposed that the severity of the coronavirus disease 2019 (COVID-19) in patients is a consequence of cytokine storm, characterized by increased IL-1ß, IL-6, IL-18, TNF-α, and IFN-γ. Hence, managing the cytokine storm by drugs has been suggested for the treatment of patients with severe COVID-19. Several of the proinflammatory cytokines involved in the pathogenesis of COVID-19 infection recruit a distinct intracellular signaling pathway mediated by JAKs. Consequently, JAK inhibitors, including baricitinib, pacritinib, ruxolitinib, and tofacitinib, may represent an effective therapeutic strategy for controlling the JAK to treat COVID-19. This study indicates the mechanism of cytokine storm and JAK/STAT pathway in COVID-19 as well as the medications used for JAK/STAT inhibitors.

10.
Microb Pathog ; 164: 105450, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35183699

RESUMEN

Enterotoxigenic (ETEC) and enterohemorrhagic Escherichia coli (EHEC) are the most important intestinal pathogens. Probiotics play an effective role in reducing the expression of virulence factor genes in intestinal pathogenic bacteria. The aim of the present study is to investigate the effect of probiotic Saccharomyces cerevisiae S3 on the expression of enterotoxin genes in both ETEC and EHEC. Supernatant and lysate of S. cerevisiae S3 are prepared. Subminimal inhibitory concentrations (sub-MIC) of supernatant and lysate are individually exerted to O157: H7 and H10407. The genes' expression of enterotoxins (elt, est, stx1, and stx2) are then determined using real-time PCR technique. The results showed, the yeast supernatant could decrease the expression of the elt gene in ETEC and that of stx1 in EHEC. Of note, in other cases, stx1 and est genes' expression increased. The lysate had no inhibitory effect on the expressions of elt, est, and stx2 genes, but it increased the expression of genes in both ETEC and EHEC. Lysate extract only decreased the expression of stx1 in O157: H7. Our study shows some interesting results regarding the effectiveness of the compounds produced by S. cerevisiae S3 in the expressions of toxin genes in both ETEC and EHEC. We recommend more similar studies be performed in this regard.


Asunto(s)
Escherichia coli Enterohemorrágica , Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Escherichia coli O157 , Enterotoxinas/genética , Infecciones por Escherichia coli/microbiología , Escherichia coli O157/genética , Humanos , Saccharomyces cerevisiae/genética
11.
Int J Environ Health Res ; 32(1): 61-71, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32073302

RESUMEN

Transmission of Pseudomonas aeruginosa along the food chain could cause gastrointestinal infections. To show this involvement, the prevalence, putative virulence genotype, and antibiotic resistance phenotype of P. aeruginosa isolates from stool of 1482 patients with community and hospital acquired diarrhea were compared with 87 isolates from the environmental samples. The results showed infection with P. aeruginosa in 3.4% of the cases, while 57.4% of vegetable samples were contaminated. Significantly higher frequency of lasB (98%), aprA (98%), exoY (98%), and exoS (90%), but lower rate of exoT (39.2%), was detected among the stool isolates. Multi-drug resistance (MDR) phenotype was detected in 25.5% and 4% of the stool and vegetable isolates, respectively. A higher rate of studied virulence genes was detected among the MDR strains vs non-MDR strains. These results indicate P. aeruginosa as a causative agent of diarrhea either among the hospitalized patients and those with community-acquired diarrhea.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos , Diarrea/epidemiología , Hospitales , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/epidemiología , Pseudomonas aeruginosa/genética , Virulencia/genética , Factores de Virulencia/genética
12.
Iran J Microbiol ; 14(3): 362-372, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37124858

RESUMEN

Background and Objectives: Source tracking of antimicrobial resistance in Campylobacter is useful for control measures. In this study, Campylobacter-associated diarrhea and homology in antimicrobial resistance of humans and poultry meat isolates were investigated. Materials and Methods: A total of 400 stools of patients and 100 poultry meat samples were analyzed. Susceptibility of the isolates was detected by disk diffusion, Etest, and agar dilution methods. Mismatch amplification mutation assay was used for the detection of mutations in the gyrA quinolone resistance determining region (QRDR). Results: Campylobacter spp., including C. jejuni, C. coli, and C. lari, were detected in 35% of the chicken meat and 6.75% of the stool samples, respectively. The QRDR mutation was detected in most of the stool and chicken meat samples. Although the frequency of resistance to tetracycline (53.5% and 62.8%), erythromycin (39.2% and 37.1%), and gentamicin (32.1% and 31.4%) was relatively similar, higher frequency of resistance to ciprofloxacin (51.4% vs 28.6%) and nalidixic acid (42.15% vs 28.6%) among the chicken meat, and ampicillin (50% and 17.1%) among the human stool was detected. Conclusion: High percentage of poultry meat samples is contaminated with different Campylobacter species, which shows homology with the patients' isolates in Tehran.

13.
Iran J Pathol ; 16(4): 403-410, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34567189

RESUMEN

BACKGROUND & OBJECTIVE: The ability of Pseudomonas aeruginosa to form biofilm has an important role in establishment of chronic phase of infections. Biofilm formation can be affected by antibiotics sub-MIC concentrations. The principal aim of the present study was to evaluate the effect of gentamicin at sub-MIC concentrations on biofilm formation in 100 Pseudomonas aeruginosa clinical isolates. METHODS: Determination of minimal inhibitory concentration of gentamicin for clinical isolates was done using micro broth dilution method. The amount of biofilm formation in the treated and untreated isolates with gentamicin sub-MIC (1/2&1/4MIC) concentrations was evaluated using microtitre plate assay. pelA and pslA genes were detected in clinical isolates by PCR method. RESULTS: 99% of clinical isolates were biofilm producer. Different changes in amount of biofilm formation were observed in the treated clinical isolates with sub-MIC concentrations of gentamicin. Two dominant changes were observed in 80% of clinical isolates. These concentrations had inhibitory effect on biofilm formation in 46.4% of isolates and caused a significant decrease in its amount. While in 31.3% of the isolates, the biofilm formation was significantly increased. The frequency of pelA and pslA genes among clinical isolates was 100%. CONCLUSION: gentamicin sub-MIC concentrations cause different changes on biofilm formation of Pseudomonas aeruginosa clinical isolates. Therefore, further studies are needed for discovering new treatment strategies and using sub-MIC concentrations of the antibiotic in prevention and treatment of Pseudomonas aeruginosa infections.

15.
Curr Microbiol ; 78(8): 3230-3238, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34216240

RESUMEN

In this study, fluorescence in situ hybridization (FISH) and PCR-amplified fragments of the 16SrDNA gene were used to determine prokaryotes diversity in Urmia Salt Lake. Prokaryote cell population in Urmia lake range from 3.1 ± 0.3 × 106, 2 ± 0.2 × 108, 4 ± 0.3 × 108, and 1.8 ± 0.2 × 108 cells ml-1 for water, soil, sediment, and salt samples by DAPI (4́, 6-diamidino-2-phenylindole) direct count, respectively. The proportion of bacteria and archaea in the samples determinable by FISH ranged between 36.1 and 55% and 48.5 and 55.5%, respectively. According to the DGGE method, some bands were selected and separated from the gel, then amplified and sequenced. The results of sequences were related to two phyla Proteobacteria (16.6%) and Bacteroidetes (83.3%), which belonged to four genera Salinibacter, Mangroviflexus, Pseudomonas, and Cesiribacter, and the archaeal sequences were related to Euryarchaeota phyla and three genera Halonotius, Haloquadratum, and Halorubrum. According to our results, it seems that prokaryotic populations in this hypersaline environment are more diverse than expected, and bacteria are so abundant and diverse and form the metabolically active part of the microbial population inhabiting this extreme environment. Molecular dependent and independent approaches revealed a different aspect of this environment microbiota.


Asunto(s)
Archaea , Lagos , Archaea/genética , Hibridación Fluorescente in Situ , Irán , Filogenia , ARN Ribosómico 16S/genética , Microbiología del Agua
16.
Iran J Public Health ; 50(2): 341-349, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33747998

RESUMEN

BACKGROUND: Pseudomonas aeruginosa is one of the most common opportunistic bacteria causing nosocomial infections, which has significant resistance to antimicrobial agents. This bacterium is a biofilm and alginate producer. Biofilm increases the bacterial resistance to antibiotics and the immune system. Therefore, the present study was conducted to investigate the biofilm formation, alginate production and antimicrobial resistance patterns in the clinical isolates of P. aeruginosa. METHODS: One hundred isolates of P. aeruginosa were collected during the study period (from Dec 2017 to Jul 2018) from different clinical samples of the patients admitted to Milad and Pars Hospitals at Tehran, Iran. Isolates were identified and confirmed by phenotypic and genotypic methods. Antimicrobial susceptibility was specified by the disk diffusion method. Biofilm formation and alginate production were measured by microtiter plate and carbazole assay, respectively. RESULTS: Sixteen isolates were resistant to all the 12 studied antibiotics. Moreover, 31 isolates were Multidrug-Resistant (MDR). The highest resistance rate was related to ofloxacin (36 isolates) and the least resistance was related to piperacillin-tazobactam (21 isolates). All the isolates could produce the biofilm and alginate. The number of isolates producing strong, medium and weak biofilms was equal to 34, 52, and 14, respectively. Alginate production was more than 400 µg/ml in 39 isolates, 250-400 µg/ml in 51 isolates and less than 250 µg/ml in 10 isolates. CONCLUSION: High prevalence of MDR, biofilm formation, and alginate production were observed among the clinical isolates of P. aeruginosa. The results also showed a significant relationship between the amount of alginate production and the level of biofilm formation.

17.
Future Microbiol ; 16(3): 143-157, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33528272

RESUMEN

Aim: Iron uptake and metabolism pathways are promising targets in vaccine development as an alternative strategy for antibiotics. Methods & methods: HemTR, a putative heme receptor of Acinetobacter baumannii, was expressed and its protectivity against A. baumannii was determined singly or in combination with the siderophore receptor, BauA, in mice. Results: High level of IgG was elicited. There was a delay in mice mortality with reduced bacterial loads in internal organs in the sublethal challenge. Protection was better in the HemTR-BauA group in both lethal and sublethal challenges. Passive transfer of anti-HemTR and anti-BauA partially protected mice against A. baumannii infection. Conclusion: HemTR in combination with other iron receptors could contribute to the development of protective vaccines against A. baumannii.


Asunto(s)
Infecciones por Acinetobacter/prevención & control , Acinetobacter baumannii/inmunología , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas Bacterianas/inmunología , Receptores de Superficie Celular/inmunología , Sepsis/prevención & control , Infecciones por Acinetobacter/inmunología , Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/genética , Animales , Carga Bacteriana , Proteínas de la Membrana Bacteriana Externa/administración & dosificación , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/administración & dosificación , Proteínas Bacterianas/genética , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/genética , Vacunas Bacterianas/inmunología , Modelos Animales de Enfermedad , Femenino , Hemo/inmunología , Humanos , Ratones , Ratones Endogámicos BALB C , Receptores de Superficie Celular/administración & dosificación , Receptores de Superficie Celular/genética , Sepsis/inmunología , Sepsis/microbiología
18.
PLoS One ; 16(2): e0245470, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33539359

RESUMEN

BACKGROUND: Knowledge about the distribution of Escherichia Coli (E. coli) pathotypes in Iran is limited. This nation-wide survey aims to provide a comprehensive description of the distribution of five pathogenic E. coli in Iran. METHODS: Stool samples were collected from 1,306 acute diarrhea cases from 15 provinces (2013-2014). E. coli-positive cultures underwent PCR testing for the detection of STEC, ETEC, EPEC, EAEC, and EIEC pathotypes. Pathotype frequency by province, age-group, and season was estimated. RESULTS: 979 diarrhea samples (75.0%) were culture-positive for E. coli (95% CI: 72.6, 77.3%), and 659 (50.5%) were pathogenic E. coli (95% CI: 47.8, 53.2%). STEC was the most frequent pathotype (35.4%). ETEC (14.0%) and EPEC (13.1%) were the second and the third most frequent pathotypes, respectively. EAEC (4.3%) and EIEC (0.3%) were not highly prevalent. Fars (88.7%) and Khorasan-e-Razavi (34.8%) provinces had the highest and lowest frequencies, respectively. E. coli pathotypes were more frequent in warmer than cooler seasons, showed the highest frequency among children under five years of age (73%), and had no significant association with participants' gender. CONCLUSIONS: Diarrheagenic E. coli may be an important cause of acute diarrhea in adults and children in Iran. STEC and ETEC seem to be widespread in the country with a peak in warmer seasons, impacting the recommended use of seasonal STEC and ETEC vaccines, especially in high-risk groups. Monitoring the incidence of E. coli pathotypes, serotypes, and antibiotic resistance over time is highly recommended for evaluation of interventions.


Asunto(s)
Diarrea/epidemiología , Escherichia coli Enterohemorrágica/genética , Escherichia coli Enterohemorrágica/patogenicidad , Escherichia coli Enteropatógena/genética , Escherichia coli Enteropatógena/patogenicidad , Infecciones por Escherichia coli/epidemiología , Enfermedad Aguda , Adolescente , Adulto , Anciano , Niño , Preescolar , Estudios Transversales , Diarrea/microbiología , Escherichia coli Enterohemorrágica/aislamiento & purificación , Escherichia coli Enteropatógena/aislamiento & purificación , Infecciones por Escherichia coli/microbiología , Heces/microbiología , Femenino , Genes Bacterianos , Humanos , Lactante , Recién Nacido , Irán/epidemiología , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Prevalencia , Estaciones del Año , Virulencia/genética , Adulto Joven
19.
Sci Rep ; 11(1): 1914, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33479293

RESUMEN

Acinetobacter baumannii is a serious health threat with a high mortality rate. We have already reported prophylactic effects of IgYs raised against OmpA and Omp34 as well as against inactivated whole-cell (IWC) of A. baumannii in a murine pneumonia model. However, the infection was exacerbated in the mice group that received IgYs raised against the combination of OmpA and Omp34. The current study was conducted to propose reasons for the observed antibody-dependent enhancement (ADE) in addition to the therapeutic effect of specific IgYs in the murine pneumonia model. This phenomenon was hypothetically attributed to topologically inaccessible similar epitopes of OmpA and Omp34 sharing similarity with peptides of mice proteins. In silico analyses revealed that some inaccessible peptides of OmpA shared similarity with peptides of Omp34 and Mus musculus. Specific anti-OmpA and anti-Omp34 IgYs cross-reacted with Omp34 and OmpA respectively. Specific IgYs showed different protectivity against A. baumannii AbI101 in the murine pneumonia model. IgYs triggered against OmpA or IWC of A. baumannii were the most protective antibodies. IgY triggered against Omp34 is ranked next after those against OmpA. The lowest protection was observed in mice received IgYs raised against the combination of rOmpA and rOmp34. In conclusion, specific IgYs against OmpA, Omp34, and IWC of A. baumannii could serve as novel biotherapeutics against A. baumannii pneumonia.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Inmunoglobulinas/inmunología , Neumonía/tratamiento farmacológico , Vacunas/inmunología , Acinetobacter baumannii/inmunología , Acinetobacter baumannii/patogenicidad , Animales , Acrecentamiento Dependiente de Anticuerpo/efectos de los fármacos , Acrecentamiento Dependiente de Anticuerpo/inmunología , Proteínas de la Membrana Bacteriana Externa/antagonistas & inhibidores , Proteínas de la Membrana Bacteriana Externa/inmunología , Modelos Animales de Enfermedad , Yema de Huevo/química , Yema de Huevo/inmunología , Epítopos/efectos de los fármacos , Epítopos/inmunología , Humanos , Inmunoglobulinas/farmacología , Ratones , Neumonía/genética , Neumonía/inmunología , Neumonía/microbiología , Vacunas/farmacología
20.
Iran J Microbiol ; 13(6): 808-816, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35222859

RESUMEN

BACKGROUND AND OBJECTIVES: Antibiotics at sub-minimum inhibitory concentrations (sub-MIC) may alter bacterial virulence factors. The objective of this study was to investigate the effect of gentamicin at sub-MIC concentrations on the expression of genes involved in alginate production and biofilm formation of Pseudomonas aeruginosa. MATERIALS AND METHODS: The broth microdilution method was used to determine the MIC of gentamicin for three P. aeruginosa clinical isolates (P1-P3) and standard strains (PAO1 and 8821M). Alginate production and biofilm formation of the bacteria in the presence and absence of sub-MIC concentrations of gentamicin were measured using microtiter plate and carbazole assay, respectively. The real-time PCR method was used to determine the effect of gentamicin at sub-MIC concentrations on the expression level of genes involved in biofilm formation (pelA and pslA) and alginate production (algD and algU). RESULTS: Gentamicin at sub-MIC concentrations significantly reduced alginate production, biofilm formation, and the expression of alginate and biofilm-encoding genes in clinical isolate P1. This inhibitory effect was also observed on the alginate production of 8821M strain and biofilm formation of PAO1strain. In clinical isolates, P2 and P3, alginate production, biofilm formation, and the expression of alginate and biofilm-encoding genes were significantly increased in exposure to sub-MIC concentrations of gentamicin. CONCLUSION: This study showed that different phenotypic changes in clinical isolates and standard strains of P. aeruginosa in exposure to sub-MIC concentrations of gentamicin are associated with changes in the expression of virulence genes. Further researches are required to understand the mechanisms involved in regulating the expression of virulence genes after exposure to sub-MIC concentrations of antibiotics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...