Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38069032

RESUMEN

Exposure to heavy metals, such as vanadium, poses an ongoing environmental and health threat, heightening the risk of neurodegenerative disorders. While several compounds have shown promise in mitigating vanadium toxicity, their efficacy is limited. Effective strategies involve targeting specific subunits of the NMDA receptor, a glutamate receptor linked to neurodegenerative conditions. The potential neuroprotective effects of ZA-II-05, an NMDA receptor antagonist, against vanadium-induced neurotoxicity were explored in this study. Organotypic rat hippocampal slices, and live mice, were used as models to comprehensively evaluate the compound's impact. Targeted in vivo fluorescence analyses of the hippocampal slices using propidium iodide as a marker for cell death was utilized. The in vivo study involved five dams, each with eight pups, which were randomly assigned to five experimental groups (n = 8 pups). After administering treatments intraperitoneally over six months, various brain regions were assessed for neuropathologies using different immunohistochemical markers. High fluorescence intensity was observed in the hippocampal slices treated with vanadium, signifying cell death. Vanadium-exposed mice exhibited demyelination, microgliosis, and neuronal cell loss. Significantly, treatment with ZA-II-05 resulted in reduced cellular death in the rat hippocampal slices and preserved cellular integrity and morphological architecture in different anatomical regions, suggesting its potential in countering vanadium-induced neurotoxicity.


Asunto(s)
Síndromes de Neurotoxicidad , Receptores de N-Metil-D-Aspartato , Ratas , Ratones , Animales , Receptores de N-Metil-D-Aspartato/metabolismo , N-Metilaspartato/metabolismo , Vanadio/toxicidad , Vanadio/metabolismo , Muerte Celular , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/metabolismo , Hipocampo/metabolismo
2.
Environ Sci Pollut Res Int ; 30(57): 120496-120514, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37945948

RESUMEN

Pollution by heavy metals is a threat to public health because of the adverse effects on multiple organ systems including the brain. Here, we used the African giant rat (AGR) as a novel sentinel host to assess the effect of heavy metal accumulation and consequential neuropathology upon the brain. For this study, AGR were collected from distinct geographical regions of Nigeria: the rain forest region of south-west Nigeria (Ibadan), the central north of Nigeria (Abuja), and in oil-polluted areas of south Nigeria (Port-Harcourt). We found that zinc, copper, and iron were the major heavy metals that accumulated in the brain and serum of sentinel AGR, with the level of iron highest in animals from Port-Harcourt and least in animals from Abuja. Brain pathology, determined by immunohistochemistry markers of inflammation and oxidative stress, was most severe in animals from Port Harcourt followed by those from Abuja and those from Ibadan were the least affected. The brain pathologies were characterized by elevated brain advanced oxidation protein product (AOPP) levels, neuronal depletion in the prefrontal cortex, severe reactive astrogliosis in the hippocampus and cerebellar white matter, demyelination in the subcortical white matter and cerebellar white matter, and tauopathies. Selective vulnerabilities of different brain regions to heavy metal pollution in the AGR collected from the different regions of the country were evident. In conclusion, we propose that neuropathologies associated with redox dyshomeostasis because of environmental pollution may be localized and contextual, even in a heavily polluted environment. This novel study also highlights African giant rats as suitable epidemiological sentinels for use in ecotoxicological studies.


Asunto(s)
Metales Pesados , Ratas , Animales , Niger , Nigeria , Metales Pesados/análisis , Contaminación Ambiental , Encéfalo , Hierro , Monitoreo del Ambiente
3.
Animal Model Exp Med ; 6(2): 168-177, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37141004

RESUMEN

BACKGROUND: The important roles of liver and kidney in the elimination of injurious chemicals make them highly susceptible to the noxious activities of various toxicants including cobalt chloride (CoCl2 ). This study was designed to investigate the role of glycine in the mitigation of hepato-renal toxicities associated with CoCl2 exposure. METHODS: Forty-two (42) male rats were grouped as Control; (CoCl2 ; 300 ppm); CoCl2 + Glycine (50 mg/kg); CoCl2 + Glycine (100 mg/kg); Glycine (50 mg/kg); and Glycine (100 mg/kg). The markers of hepatic and renal damage, oxidative stress, the antioxidant defense system, histopathology, and immunohistochemical localization of neutrophil gelatinase associated lipocalin (NGAL) and renal podocin were evaluated. RESULTS: Glycine significantly reduced the markers of oxidative stress (malondialdehyde content and H2 O2 generation), liver function tests (ALT, AST, and ALP), markers of renal function (creatinine and BUN), and decreased the expression of neutrophil gelatinase-associated lipocalin (NGAL) and podocin compared with rats exposed to CoCl2 toxicity without glycine treatment. Histopathology lesions including patchy tubular epithelial necrosis, tubular epithelial degeneration and periglomerular inflammation in renal tissues, and severe portal hepatocellular necrosis, inflammation, and duct hyperplasia were observed in hepatic tissues of rats exposed to CoCl2 toxicity, but were mild to absent in glycine-treated rats. CONCLUSION: The results of this study clearly demonstrate protective effects of glycine against CoCl2 -induced tissue injuries and derangement of physiological activities of the hepatic and renal systems in rats. The protective effects are mediated via augmentation of total antioxidant capacity and upregulation of NGAL and podocin expression.


Asunto(s)
Antioxidantes , Glicina , Ratas , Masculino , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Lipocalina 2/farmacología , Ratas Wistar , Glicina/farmacología , Cloruros/metabolismo , Cloruros/farmacología , Hígado , Inflamación/metabolismo , Necrosis
4.
Biomarkers ; 28(3): 263-272, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36632742

RESUMEN

PURPOSE: Anacardium occidentale commonly known as Cashew is a plant that is widely used in African traditional medicine. It is endowed with phytochemical constituents that are responsible for its medicinal properties. METHODS: Twenty-five male Wistar rats were grouped as follows: Control (Group A), Group B (L-NAME 40 mg/kg), Group C (100 mg/kg Anacardium occidentale extract plus 40 mg/kg L-NAME), Group D (200 mg/kg extract plus 40 mg/kg L-NAME) and Group E (10 mg/kg of Lisinopril plus 40 mg/kg L-NAME). The animals were treated with oral administration of either the extracts or Lisnopril daily for 4 weeks. Neuro-behavioural tests such as the Morris Water Maze and Hanging Wire Grip tests were carried out to evaluate memory/spatial learning and muscular strength, respectively. Makers of oxidative stress, antioxidant enzymes and immunohistochemical staining of Glial Fibrillary Acidic Protein and Ionised Calcium Binding Adaptor molecule 1 were assessed. RESULTS: L-NAME administration caused significant increases in biomarkers of oxidative stress, decreased antioxidant status, acetylcholinesterase activity, altered neuro-behavioural changes, astrocytosis, and microgliosis. However, Anacardium occidentale reversed exaggerated oxidative stress biomarkers and improved neuro-behavioural changes. CONCLUSIONS: Combining all, Anacardium occidentale enhanced brain antioxidant defence status, improved memory and muscular strength, thus, suggesting the neuroprotective properties of Anacardium occidentale.


Asunto(s)
Anacardium , Ratas , Animales , Ratas Wistar , Anacardium/química , NG-Nitroarginina Metil Éster , Antioxidantes , Enfermedades Neuroinflamatorias , Acetilcolinesterasa , Biomarcadores , Trastornos de la Memoria , Extractos Vegetales/química
5.
Biomarkers ; 28(1): 11-23, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36250715

RESUMEN

IntroductionCobalt chloride-(CoCl2) exerts beneficial and toxic activities depending on dose however Naringenin-(Nar) a flavonoid, chelates heavy metals. Absorption of ingested heavy metals, or chelates are dependent on gut motility (gastric emptying and intestinal transit time) and mechanosensor regulation. Literature is vague on CoCl2 activities on gut motility and mechanosensor nor probable chelating actions with naringenin which was investigated in this study.MethodOne hundred male Wistar rats were grouped viz; A to D (25, 62, 150 and 300 mg/kg CoCl2), E to H doses of CoCl2+Nar (50 mg/kg), I-Narigenin and J-Control. Gastric emptying and intestinal transit time were evaluated by day eight, intestinal tissue assayed for biochemical, histological and immunohistochemistry reactivity.ResultCoCl2 significantly increased Gastric emptying (150 and 300 mg/kg) and Intestinal transit time unlike Naringenin. CoCl2 (150 mg/kg) significantly increased Catalase and Nitric oxide but ameliorated by Naringenin. ATPase activities significantly increased in 150 mg/kg-CoCl2 but ameliorated by Naringenin. Carbonyl levels increased in all CoCl2+Nar groups. High Enterochromaffin-cell count in 25 and 62 mg/kg-CoCl2 were ameliorated by Naringenin. Serotonin immunoreactivity increased in CoCl2 (25, 62, 300 mg/kg) but reduced in CoCl2+Nar groups.ConclusionCobalt chloride enhanced gastric motility via increased mechanosensor activities and serotonin expression at low doses. Naringenin ameliorated toxicity of high cobalt chloride via metal-flavonoid chelates.


Asunto(s)
Flavanonas , Serotonina , Ratas , Animales , Masculino , Ratas Wistar , Cloruros , Cobalto
6.
Environ Sci Pollut Res Int ; 30(9): 23263-23275, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36319925

RESUMEN

Sodium fluoride (NaF) is one of the neglected environmental toxicants that has continued to silently cause toxicity to both humans and animals. NaF is universally present in water, soil, and atmosphere. The persistent and alarming rate of increase in cardiovascular and renal diseases caused by chemicals such as NaF in mammalian tissues has led to the use of various drugs for the treatment of these diseases. The present study aimed at evaluating the renoprotective and antihypertensive effects of L-arginine against NaF-induced nephrotoxicity. Thirty male Wistar rats (150-180 g) were used in this study. The rats were randomly divided into five groups of six rats each as follows: Control, NaF (300 ppm), NaF + L-arginine (100 mg/kg), NaF + L-arginine (200 mg/kg), and NaF + lisinopril (10 mg/kg). Histopathological examination and immunohistochemistry of renal angiotensin-converting enzyme (ACE) and mineralocorticoid receptor (MCR) were performed. Markers of renal damage, oxidative stress, antioxidant defense system, and blood pressure parameters were determined. L-arginine and lisinopril significantly (P < 0.05) ameliorated the hypertensive effects of NaF. The systolic, diastolic, and mean arterial blood pressure of the treated groups were significantly (P < 0.05) reduced compared with the hypertensive group. This finding was concurrent with significantly increased serum bioavailability of nitric oxide in the hypertensive rats treated with L-arginine and lisinopril. Also, there was a significant reduction in the level of blood urea nitrogen and creatinine of hypertensive rats treated with L-arginine and lisinopril. There was a significant (P < 0.05) reduction in markers of oxidative stress such as malondialdehyde and protein carbonyl and concurrent increase in the levels of antioxidant enzymes in the kidney of hypertensive rats treated with L-arginine and lisinopril. The results of this study suggest that L-arginine and lisinopril normalized blood pressure, reduced oxidative stress, and the expression of renal ACE and mineralocorticoid receptor, and improved nitric oxide production. Thus, L-arginine holds promise as a potential therapy against hypertension and renal damage.


Asunto(s)
Hipertensión , Lisinopril , Humanos , Ratas , Masculino , Animales , Lisinopril/metabolismo , Lisinopril/farmacología , Lisinopril/uso terapéutico , Fluoruro de Sodio/toxicidad , Antioxidantes/metabolismo , Óxido Nítrico/metabolismo , Receptores de Mineralocorticoides/metabolismo , Receptores de Mineralocorticoides/uso terapéutico , Ratas Wistar , Hipertensión/inducido químicamente , Riñón , Presión Sanguínea , Estrés Oxidativo , Arginina/metabolismo , Arginina/farmacología , Arginina/uso terapéutico , Suplementos Dietéticos , Angiotensinas/metabolismo , Angiotensinas/farmacología , Angiotensinas/uso terapéutico , Mamíferos
7.
Biomarkers ; 28(2): 206-216, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36480283

RESUMEN

PurposeThe persistent and alarming rates of increase in cardiovascular and renal diseases caused by chemicals such as cobalt chloride (CoCl2) in mammalian tissues have led to the use of various drugs for the treatment of these diseases. This study aims at evaluating the nephron-protective action of Naringin (NAR), a metal-chelating antioxidant against CoCl2-induced hypertension and nephrotoxicity.MethodsForty-two male Wistar rats were randomly distributed to seven rats of six groups and classified into Group A (Control), Group B (300 part per million; ppm CoCl2), Group C (300 ppm CoCl2 + 80 mg/kg NAR), Group D (300 ppm CoCl2 + 160 mg/kg NAR), Group E (80 mg/kg NAR), and Group F (160 mg/kg NAR). NAR and CoCl2 were administered via oral gavage for seven days. Biomarkers of renal damage, oxidative stress, antioxidant status, blood pressure parameters, immunohistochemistry of renal angiotensin-converting enzyme and podocin were determined.ResultsCobalt chloride intoxication precipitated hypertension, renal damage, and oxidative stress. Immunohistochemistry revealed higher expression of angiotensin-converting enzyme (ACE) and podocin in rats administered only CoCl2.ConclusionTaken together, the antioxidant and metal-chelating action of Naringin administration against cobalt chloride-induced renal damage and hypertension could be through abrogation of angiotensin-converting enzyme and podocin signalling pathway.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Hipertensión , Ratas , Masculino , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Ratas Wistar , Cobalto/toxicidad , Hipertensión/inducido químicamente , Hipertensión/tratamiento farmacológico , Angiotensinas/efectos adversos , Mamíferos/metabolismo
8.
Environ Sci Pollut Res Int ; 30(12): 34890-34903, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36520287

RESUMEN

Lead is one of the major pollutants that is harmful to both animals and humans. It is found in every aspect of the environment such as the air, water, and soil. This pollutant affects both wild and domestic birds. Naringin has an active principle called flavonoid that has been found to have medicinal properties, mostly because of its antioxidant and metal chelating properties. This study was carried out to investigate the protective effect of naringin as an antioxidant against lead-induced anemia, cardio and nephrotoxicity, and hypertension. This study also aimed at elucidating the use of naringin as a heavy metal binder in poultry feed. Thirty-six cockerel chicks were used for this study, and randomly grouped into six groups per group; group A served as the control, group B received Pb-only (300 ppm), group C (Pb and naringin; 80 mg/kg), group D (Pb and naringin; 160 mg/kg), group E (naringin 80 mg/kg), and group F (naringin 160 mg/kg), respectively, for 8 weeks. Lead (Pb) was administered via drinking water, while naringin was administered via oral gavage. Lead acetate intoxication precipitated anemia as indicated by significant reductions in the values of PCV, RBC, and Hb concentration in lead-treated chicks when compared with the controls. Also, lead administration induced hypertension together with increased oxidative stress, depletion of the antioxidant defense system, reduced nitric oxide production, and an increase in high blood pressure. Immunohistochemistry indicated high expressions of cardiac troponin, renal angiotensin-converting enzymes, and renal neutrophil gelatinase-associated lipocalin. Treatment with naringin corrected anemia, reduced oxidative stress, improved antioxidant system, reduced high blood pressure, and offered protection against lead acetate-induced cardio-renal dysfunction in cockerel chicks. We recommend that naringin should be incorporated poultry feeds as a metal binder.


Asunto(s)
Hipertensión , Enfermedades Renales , Humanos , Masculino , Animales , Antioxidantes/metabolismo , Plomo/farmacología , Pollos/metabolismo , Estrés Oxidativo , Enfermedades Renales/inducido químicamente , Hipertensión/inducido químicamente
9.
J Basic Clin Physiol Pharmacol ; 34(1): 33-39, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34363382

RESUMEN

OBJECTIVES: Ovariectomy induces heightened response to vasoconstrictors, alters vasorelaxation and consequently causes hypertension due to increased oxidative stress in rats. METHODS: This study evaluated the ameliorative effects of ramipril and vitamin E, on primary haemodynamic parameters and cardiac antioxidant defence status, in ovariectomised rats using 64 adult female rats of the Wistar strain randomly divided as follows: Control (sham); Ovariectomised (OVX); OVX plus Ramipril; OVX plus vitamin E; and OVX plus Ramipril plus vitamin E. RESULTS: The plasma level of oestrogen was significantly lower (p<0.05), in the ovariectomised rats compared with the sham. The systolic, diastolic and mean arterial blood pressure of ovariectomised rats increased significantly (p<0.05), but the alteration was significantly reduced by the administration of ramipril alone or in combination with vitamin E. Significant decrease (p<0.05) was observed in the serum level of nitric oxide in OVX group compared with Sham. Also, analysed markers of oxidative stress: Malondialdehyde (MDA) contents and hydrogen peroxide (H2O2) generated decreased significantly (p<0.05), but systemic antioxidants: reduced glutathione (GSH) contents; glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities increased significantly (p<0.05) in the ovariectomised rats treated with ramipril and vitamin E compared with untreated ovariectomised rats. The study concludes that alteration, in the primary haemodynamic parameters, associated with ovariectomy in rats is potently ameliorated by co-administration of the antihypertensive drug ramipril and vitamin E. CONCLUSIONS: The supplementation of antihypertensive regimen with antioxidants such as vitamin E in the treatment of hypertension is therefore justifiable especially in ovariectomised or hypogonadal patients.


Asunto(s)
Antioxidantes , Vitamina E , Animales , Femenino , Ratas , Antihipertensivos/farmacología , Antioxidantes/farmacología , Antioxidantes/metabolismo , Suplementos Dietéticos , Hemodinámica , Peróxido de Hidrógeno , Estrés Oxidativo , Ramipril/farmacología , Ratas Wistar , Superóxido Dismutasa/metabolismo , Vitamina E/farmacología
10.
Niger J Physiol Sci ; 38(2): 239-246, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38696693

RESUMEN

Lead (Pb) toxicity constitutes a major health hazard to both humans and animals especially in the developing countries. It is a ubiquitous environmental contaminant found in the air essentially because of unregulated mining and other industrial activities. Lead can be found naturally in the soil thus, contaminating crops for human and animal food, as well as run-off water and air pollution. Intensively and extensively reared domestic chickens are exposed to contamination via inhalation and ingestion of contaminated food materials. Naringin, a product from citrus plant has been described to possess excellent metal chelating ability. Naringin is rich in flavonoid with attendant antioxidant, anti-autophagy, anti-inflammatory, hepatoprotective and cardio-nephroprotective properties. This study was conducted to investigate the hepatoprotective and modulation of oxidative stress in commercial cockerel chickens by Naringin. Thirty-six commercial cockerel chickens were randomly assigned into six groups A-F of six birds each viz: Group A served as control group while groups B, C, and D received Lead acetate at 300 ppm via drinking water continuously till the end of the experiment. In addition, groups C and D were treated with Naringin at 80 mg/kg and 160mg/kg, respectively, via oral gavage for 8 weeks. Groups E and F were administered naringin only at 80mg/kg and 160mg/kg respectively for eight weeks. Pb toxicity induced degenerative changes in the histological sections as well as, higher expression of hepatic caspase 3 as shown by immunohistochemistry. There was increased oxidative stress markers (H2O2, MDA) and depletion of the antioxidant defense system markers SOD, GPx, GSH, and GST. It concluded that Co- treatment with Naringin ameliorated oxidative stress, enhanced antioxidant defense system, reduced the expression of hepatic caspase 3 thus, offering protection against lead acetate-induced derangements in the liver of commercial cockerel chickens.


Asunto(s)
Pollos , Flavanonas , Hígado , Compuestos Organometálicos , Estrés Oxidativo , Animales , Flavanonas/farmacología , Compuestos Organometálicos/toxicidad , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Inmunohistoquímica , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
11.
Niger J Physiol Sci ; 38(1): 101-106, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38243360

RESUMEN

Cardiovascular diseases are the leading causes of mortality in the world today with hypertension being the major clinical presentation of these diseases. This study assessed the anti-hypertensive effects of Lagenaria breviflora whole fruit and Xanthsoma  sagittifolium corms in experimentally inudced hypertensive Wistar rats. The ability of the plants to ameliorate oxidative damage accompanying hypertension was evaluated using changes in oxidative stress markers as well as monitoring of cardiovascular parameters. Hypertension was induced by intraperitoneal injection of DOCA salt twice weekly and daily inclusion of NaCl (1%) in drinking water. Methanol extracts of L.breviflora or X. sagittifolium was administered to hypertensive rats for 35 days and the outcome was compared to hypertensive rats administred with lisinopril or hydrochlorothiazide and a group of normotensive rats (control). Systolic, diastolic and mean arterial pressures were determined on day 34 and blood sample collected on day 35. The rats were thereafter humanely sacrificed, and organs were harvested. This study showed that the extracts lowered blood pressure, free protein thiols but increased toal protein, gluthathione peroxidase, reduced glutathione, glutathione S-transferase, catalase and nitric oxide in the heart, kidney and liver compared to untreated hypertensive rats. However, malondialdehyde levels and hydrogen peroxide activities were reduced. L. breviflora fruit and X. sagittifloium corm exhibited antihypertensive properties and ameliorate oxidative damage associated with hypertension by enhancing the antioxidant defense sysyem and inhibiting generation of free radicals.


Asunto(s)
Hipertensión , Xanthosoma , Ratas , Animales , Antioxidantes/uso terapéutico , Ratas Wistar , Xanthosoma/metabolismo , Frutas/metabolismo , Hipertensión/tratamiento farmacológico , Estrés Oxidativo , Antihipertensivos/farmacología , Presión Sanguínea
12.
Niger J Physiol Sci ; 37(1): 35-42, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35947836

RESUMEN

This study was designed to investigate the modulatory role of Luteolin (Lut), a flavonoid phytochemical, on haemodynamic parameters and the potential mechanisms involving renal Angiotensin II (AT2R) and Mineralocorticoid (MCR) receptors in renal toxicity induced by co-exposure to Diclofenac (Dcf) and sodium fluoride (NaF) in rats.Male Wistar rats were administered with either vehicle (control), Dcf only (9 mg/kg orally) or concurrently with NaF (300 ppm in drinking water). Other groups were treated with LutA (100 mg/kg) or LutB (200 mg/kg) along with Dcf and NaF exposures. All treatments lasted 8 days, following which blood pressure indices were measured using tail-cuff plethysmography. Renal expressions of AT2R and MCR were studied with immunohistochemistry, while biomarkers of oxidative and antioxidant status were also measured in the kidneys. Systolic, diastolic and mean arterial pressures were significantly (p<0.05) reduced in Dcf-treated rats, compared to control values. However, co-treatment with NaF or Lut restored these parameters. While the expression of AT2R and MCR was high in the Dcf and Dcf+NaF groups, treatment with Lut caused obvious reduction in the renal expression of these receptors. Increased lipid peroxidation (Malondialdehyde) and protein oxidation (protein carbonyls) with a lowering of reduced glutathione levels contributed to the renal toxicity of Dcf, and these were significantly ameliorated in Lut-treated rats. In conclusion, the preservation of haemodynamic indices by Lutin the experimental ratsprobably included mechanisms involving down-regulation of renal expressions of AT2R and MCR, reduction of oxidative stress and an improvement of renal antioxidant status.


Asunto(s)
Antioxidantes , Fluoruro de Sodio , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Presión Sanguínea , Diclofenaco/metabolismo , Diclofenaco/toxicidad , Regulación hacia Abajo , Riñón/metabolismo , Luteolina/metabolismo , Luteolina/farmacología , Masculino , Estrés Oxidativo , Ratas , Ratas Wistar , Receptores de Angiotensina/metabolismo , Receptores de Mineralocorticoides/metabolismo , Fluoruro de Sodio/metabolismo , Fluoruro de Sodio/toxicidad
13.
Andrologia ; 54(9): e14516, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35765120

RESUMEN

Cadmium (Cd) is one of the most dangerous heavy metals in the world. Globally, toxicities associated with cadmium and its attendant negative impact on humans and animals cannot be under-estimated. Cd is a heavy metal, and people are exposed to it through contaminated foods and smoking. Cd exerts its deleterious impacts on the testes (male reproductive system) by inducing oxidative stress, spermatogenic cells apoptosis, testicular inflammation, decreasing androgenic and sperm cell functions, disrupting ionic homeostasis, pathways and epigenetic gene regulation, damaging vascular endothelium and blood testes barrier. In association with other industrial by-products, Cd has been incriminated for the recent decline of male fertility rate seen in both man and animals. Understanding the processes involved in Cd-induced testicular toxicity is vital for the innovation of techniques that will help ameliorate infertility in males. In this review, we summed up recent studies on the processes of testicular toxicity and male infertility due to Cd exposure. Also, the usage of different compounds including phytochemicals, and plant extracts to manage Cd reprotoxicity will be reviewed.


Asunto(s)
Intoxicación por Cadmio , Infertilidad Masculina , Metales Pesados , Animales , Cadmio/toxicidad , Fertilidad , Humanos , Infertilidad Masculina/inducido químicamente , Infertilidad Masculina/metabolismo , Masculino , Estrés Oxidativo , Semen/metabolismo , Testículo/metabolismo
14.
J Food Biochem ; 46(8): e14198, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35608322

RESUMEN

BACKGROUND: Murraya koenigii (L.) Spreng. (Rutaceae) has been reported to positively affect liver function. However, the effect of M. koenigii leaves on Nω -Nitro-L-Arginine Methyl Ester (L-NAME) induced liver dysfunction is unknown. The aim of the present study was therefore to investigate the effect of M.koenigii leaves as tea on L-NAME induced liver dysfunction. METHODS: Two variants of curry tea were formulated; one was formulated entirely from leaves of M. koenigii, the other was formulated with thaumatin-rich aril obtained from seeds of Thaumatococcus danielii (Benn.) Benth. (Marantaceae). Group I animals served as control and were untreated. Groups II and V animals were administered curry tea (CT). Group III and VI animals received curry-thaumatin tea (CTT). Concurrently, L-NAME (40 mg/kg) was administered to groups IV-VI respectively for 21 days. Blood and liver samples were collected at the end of the study for biochemical, histological, and immunohistochemical analysis. RESULTS: L-NAME induced liver dysfunction evidenced by liver histology, increased activities of ALT, AST, hyperlipidemia, hepatic oxidative stress and increased hepatic NF-kB expression. Administration of CT and CTT ameliorated the L-NAME induced liver dysfunction evidenced by liver histology, increased NO hepatic bioavailability, reduced activity of ALT and AST, increased hepatic antioxidant system and decreased hepatic NF-kB expression. Thaumatin taste/flavor enhancer did not significantly reduce or potentiate the hepatoprotective, antioxidant and anti-lipidemic property of aqueous curry tea extracts in rats. CONCLUSION: L-NAME impaired liver function in rats. CT and CTT interfered with the ability of L-NAME to inhibit NO synthesis which was associated with ameliorated hepatic dysfunction. PRACTICAL APPLICATIONS: The study reports that non-selective inhibition of nitric oxide by L-NAME in rats impairs liver function and formulated curry tea types interfered with the ability of L-NAME to inhibit NO synthesis which was associated with ameliorated hepatic dysfunction in rats.


Asunto(s)
Antioxidantes , Hepatopatías , Animales , Antioxidantes/farmacología , Arginina/análogos & derivados , Masculino , FN-kappa B/genética , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico , Ratas , Ratas Wistar ,
15.
J Ethnopharmacol ; 284: 114768, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34688802

RESUMEN

ETHNOPHARMACOLOGICAL SIGNIFICANCE AND AIM: Hura crepitans is commonly used to treat liver diseases in Nigeria and Ghana. Previous studies have supported its ethnomedicinal use in protecting the liver. The present study aimed at assessing the effect of H. crepitans stem bark on the subacute carbon tetrachloride (CCl4)-induced liver damage in rats. MATERIALS AND METHODS: The protective activities of ethanolic extract of H. crepitans stem bark was evaluated in CCl4-induced subacute liver damage in rats (1:1 v/v in olive oil, intraperitoneally (i.p.), twice weekly for 8 weeks). Blood samples were obtained from the rats and used for some biochemical analysis such as liver function test (Aspartate transaminase, AST; Alanine aminotransferase, ALT; and Alkaline phosphatase, ALP), liver fibrotic indices (Aspartate platelet ratio index, APRI; AST/ALT and AST/PLT ratios) and oxidative stress markers (Malondialdehyde, MDA; Reduced glutathione, GSH; Glutathione S-transferase, GST; Glutathione peroxidase, GPx; and superoxide dismutase, SOD). Histopathological analyses were carried out to determine the expression of pro-inflammatory (NF-κB, COX-2, IL-17 and IL-23) using immunohistochemical techniques. RESULTS: Oral administration of H. crepitans to CCl4-induced hepatic injured rats significantly decreased oxidative stress, increased the levels of SOD, GSH, GST and GPx with reduced MDA levels. The plant also mitigated liver injury as evidenced in the significantly reduced levels of AST, ALT and ALP, while it inhibited the inflammatory process via the inhibition of NF-κB, and consequently down-regulateed the pro-inflammatory cytokines COX-2, IL-17 and IL-23, respectively. Biochemical observations were supported by improvement in liver microarchitecture. CONCLUSION: The Hura crepitans demonstrated antioxidant, antiinflammatory and antifibrotic effect in hepatic injured rats. The study in a way justifies the traditional use of the plant for the treatment of subacute liver diseases in Nigerian Traditional medicine.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Euphorbiaceae/química , Fitoterapia , Corteza de la Planta/química , Tallos de la Planta/química , Animales , Intoxicación por Tetracloruro de Carbono , Ghana , Humanos , Masculino , Medicinas Tradicionales Africanas , Nigeria , Ratas , Ratas Sprague-Dawley
16.
J Complement Integr Med ; 19(2): 375-382, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34018384

RESUMEN

OBJECTIVES: Increasing hypertension incidence in Sub-Sahara Africa and the current cost of management of the metabolic disorder has necessitated research on medicinal plants employed in African Traditional Medicine for hypertension. Thus, this study evaluated antihypertensive effect of Annona muricata leaves or Curcuma longa rhizomes in experimentally-induced hypertensive male Wistar rats (n=70) which were unilaterally nephrectomized and daily loaded with 1% salt. Cardiovascular and haematological changes, as well as urinalysis were determined. METHODS: Rats were uninephrectomized and NaCl (1%) included in drinking water for 42 days. Extract-treated hypertensive rats were compared to normotensive, untreated hypertensive and hypertensive rats treated with lisinopril (5 mg/70 kg) or hydrochlorothiazide (12.5 mg/70 kg). A. muricata extract or C. longa extract were administered at 100, 200 or 400 mg/kg. Blood pressure (systolic, diastolic and mean arterial) and electrocardiogram was measured on day 41. Twenty-four-hour urine samples were collected from day 42. Blood samples were collected on day 43 for haematology (PCV, red cell indices, WBC and its differentials, and platelets). RESULTS: A. muricata or C. longa extracts caused a decline in elevated blood pressure of hypertensive rats. Heart rate and QT segment reduction coupled with prolonged QRS duration were reversed in extract-treated rats, with significant increases in hemogram parameters indicating increased blood viscosity. Also, leukocyturia, proteinuria and ketonuria with increased urine alkalinity, urobilinogen and specific gravity which are classical indicators of poor prognostic outcomes in hypertension were reversed in extract-treated rats. CONCLUSIONS: In conclusion, A. muricata and C. longa have cardioprotective effect with reversal of derangements in haemogram and urinalysis associated with hypertension.


Asunto(s)
Annona , Presión Arterial , Curcuma , Hipertensión , Extractos Vegetales , Animales , Annona/química , Presión Arterial/efectos de los fármacos , Curcuma/química , Electrocardiografía , Hipertensión/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratas , Ratas Wistar
17.
Biol Trace Elem Res ; 200(3): 1220-1236, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33893992

RESUMEN

Sodium fluoride (NaF) is one of the neglected environmental pollutants. It is ubiquitously found in the soil, water, and environment. Interestingly, fluoride has been extensively utilized for prevention of dental caries and tartar formation, and may be added to mouthwash, mouth rinse, and toothpastes. This study is aimed at mitigating fluoride-induced hypertension and nephrotoxicity with clofibrate, a peroxisome proliferator-activated receptor-alpha (PPARα) agonist. For this study, forty male Wistar rats were used and randomly grouped into ten rats per group, control, sodium fluoride (NaF; 300 ppm) only, NaF plus clofibrate (250 mg/kg) and NaF plus lisinopril (10 mg/kg), respectively, for 7 days. The administration of NaF was by drinking water ad libitum, while clofibrate and lisinopril were administered by oral gavage. Administration of NaF induced hypertension, and was accompanied with exaggerated oxidative stress; depletion of antioxidant defence system; reduced nitric oxide production; increased systolic, diastolic and mean arterial pressure; activation of angiotensin-converting enzyme activity and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB); and testicular apoptosis. Treatment of rats with clofibrate reduced oxidative stress, improved antioxidant status, lowered high blood pressure through the inhibition of angiotensin-converting enzyme activity, mineralocorticoid receptor over-activation, and abrogated testicular apoptosis. Taken together, clofibrate could offer exceptional therapeutic benefit in mitigating toxicity associated with sodium fluoride.


Asunto(s)
Clofibrato , Caries Dental , Animales , Clofibrato/toxicidad , Masculino , Estrés Oxidativo , PPAR alfa/metabolismo , Ratas , Ratas Wistar , Fluoruro de Sodio/toxicidad
18.
Pak J Pharm Sci ; 35(6): 1581-1694, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36789818

RESUMEN

Launaea taraxacifolia has been traditionally used for the management of conditions such as cardiovascular, respiratory, and metabolic diseases. High blood pressure was established by oral administration of L-Nitro Arginine Methyl Ester (L-NAME) a non-selective inhibitor of endothelial nitric oxide synthase (eNOS). The antihypertensive action of the methanol leaf extract of L. taraxacifolia was examined. Fifty male Wistar rats were divided into 5 groups of 10 animals per group: Group A (Distilled water), Group B (Hypertensive rats; 40mg/kg L-NAME), Group C (Hypertensive rats plus 100mg/kg extract), Group D (Hypertensive rats plus 200 mg/kg extract) and Group E (Hypertensive rats plus 10mg/kg of Lisinopril). The treatments were orally administered for five weeks. Haemodynamic parameters, urinalysis, indices of oxidative stress and immunohistochemistry were determined. Findings from this study showed that blood pressure parameters, urinary sodium and indices of oxidative stress increased significantly while In-vivo antioxidant defence systems decreased significantly in hypertensive rats. Immunohistochemistry revealed significant increases in expressions of mineralocorticoid receptor, angiotensin converting enzyme activity and kidney injury molecule-1 in kidney of hypertensive rats. Treatment with Launeae taraxacifolia normalized blood pressure parameters, urinary sodium, oxidative stress indices, antioxidant defence system, and serum nitric oxide bioavailability.


Asunto(s)
Antihipertensivos , Asteraceae , Hipertensión , Extractos Vegetales , Animales , Masculino , Ratas , Antihipertensivos/farmacología , Antioxidantes/farmacología , Presión Sanguínea , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , NG-Nitroarginina Metil Éster , Óxido Nítrico/metabolismo , Estrés Oxidativo , Ratas Wistar , Sodio , Extractos Vegetales/farmacología
19.
Niger J Physiol Sci ; 37(2): 219-224, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38243572

RESUMEN

Toxic metals such as lead (Pb) cause severe liver damage in humans and animals, with oxidative stress prominently implicated in the pathogenesis of lead acetate­induced liver injury. Azadirachta indica is hepatoprotective due to its antioxidative effect. This study investigated the antioxidative role of A. indica (AI) and its chemopreventive effect on lead acetate (LA)-induced hepatocellular dysfunction with seventy adult male rats classified into group A- Control (distilled water), group B 0.1% LA only, group C and D- 0.1% LA + 100 mg/kg and 0.1% LA + 200 mg/kg AI respectively, group E- 0.2% LA, group F and G- 0.2% LA + 100 mg/kg and 0.2% LA + 200 mg/kg AI. Oxidative stress markers (MDA and H2O2), antioxidant parameters (GSH, SOD, CAT, GPx, GST), inflammatory markers (MPO and NO), alanine aminotransferase (ALT) and histopathological studies of the liver were evaluated. The results showed that LA administration caused a decrease in GSH, GPx, and GST while AI co-administration increased the activities of the antioxidants. Moreover, LA administration increased MPO, NO, MDA, and H2O2 levels whereas AI significantly reduced (P<0.05) these parameters. Histopathological examination revealed necrosis and mild infiltration by inflammatory cells in LA administered rats, whereas these lesions were absent in AI administered rats. In conclusion, A. indica demonstrates a protective role in lead acetate-induced hepatotoxicity, mainly via oxidative stress inhibition.


Asunto(s)
Azadirachta , Enfermedad Hepática Inducida por Sustancias y Drogas , Compuestos Organometálicos , Humanos , Ratas , Masculino , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Ratas Wistar , Azadirachta/metabolismo , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo , Hígado , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
20.
Vet World ; 14(10): 2705-2713, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34903929

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of coronavirus disease 2019 (COVID-19). This virus has become a global pandemic with unprecedented mortality and morbidity along with attendant financial and economic crises. Furthermore, COVID-19 can easily be transmitted regardless of religion, race, sex, or status. Globally, high hospitalization rates of COVID-19 patients have been reported, and billions of dollars have been spent to contain the pandemic. Angiotensin-converting enzyme (ACE) 2 is a receptor of SARS-CoV-2, which has a significant role in the entry of the virus into the host cell. ACE2 is highly expressed in the type II alveolar cells of the lungs, upper esophagus, stratified epithelial cells, and other tissues in the body. The diminished expressions of ACE2 have been associated with hypertension, arteriosclerosis, heart failure, chronic kidney disease, and immune system dysregulation. Overall, the potential drug candidates that could serve as ACE2 activators or enhance the expression of ACE2 in a disease state, such as COVID-19, hold considerable promise in mitigating the COVID-19 pandemic. This study reviews the therapeutic potential and pharmacological benefits of the novel ACE2 in the management of COVID-19 using search engines, such as Google, Scopus, PubMed, and PubMed Central.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...