Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 5766, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36180432

RESUMEN

Electronic synergy between metal ions and organic linkers is a key to engineering molecule-based materials with a high electrical conductivity and, ultimately, metallicity. To enhance conductivity in metal-organic solids, chemists aim to bring the electrochemical potentials of the constituent metal ions and bridging organic ligands closer in a quest to obtain metal-d and ligand-π admixed frontier bands. Herein, we demonstrate the critical role of the metal ion in tuning the electronic ground state of such materials. While VCl2(pyrazine)2 is an electrical insulator, TiCl2(pyrazine)2 displays the highest room-temperature electronic conductivity (5.3 S cm-1) for any metal-organic solid involving octahedrally coordinated metal ions. Notably, TiCl2(pyrazine)2 exhibits Pauli paramagnetism consistent with the specific heat, supporting the existence of a Fermi liquid state (i.e., a correlated metal). This result widens perspectives for designing molecule-based systems with strong metal-ligand covalency and electronic correlations.

2.
Dalton Trans ; 51(34): 12954-12967, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35960153

RESUMEN

A family of Mn(II)Ln(III) dinuclear and tetranuclear complexes (Ln = Gd and Dy) has been prepared from the compartmental ligands N,N'-dimethyl-N,N'-bis(2-hydroxy-3-formyl-5-bromobenzyl)ethylenediamine (H2L1) and N,N',N''-trimethyl-N,N''-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine (H2L2). The Mn(II)Gd(III) complexes exhibit antiferromagnetic interactions between Mn(II) and Gd(III) ions in most cases, which are supported by Density Functional Theory (DFT) calculations. Experimental magneto-structural correlations carried out for the reported complexes and other related complexes found in bibliography show that the highest ferromagnetic coupling constants are observed in di-µ-phenoxido bridged complexes, which is due to the planarity of the Mn-(µ-O)2-Gd bridging fragment and to the high Mn-O-Gd angles. The effect of these angles has been studied by DFT calculations performed on a di-µ-phenoxido doubly bridged model. The magneto-thermal properties of the Mn(II)Gd(III) based complexes have also been measured, concluding that the magnitude of the Magneto-Caloric Effect (MCE) is due to the strength rather than to the nature of the magnetic coupling. Moreover, when two Mn(II)Gd(III) dinuclear units are connected by two carbonato-bridging ligands the MCE is enhanced, obtaining a maximum magnetic entropy change of 36.4 Jkg-1 K-1 at ΔB = 7 T and T = 2.2 K. On the other hand, one of the dinuclear Mn(II)Dy(III) complexes displays Single-Molecule Magnet (SMM) behaviour with an energy barrier of 14.8 K under an applied external field of 1000 Oe.

3.
Inorg Chem ; 61(5): 2428-2443, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35084833

RESUMEN

The reaction of mid to late lanthanide ions with the N,N'-dimethyl-N,N'-bis(2-hydroxy-3-formyl-5-bromobenzyl)ethylene-diamine organic ligand and monolacunary Keggin type [α-SiW11O39]8- anion affords a series of isostructural compounds, namely, K5[LnIII(α-SiW11O39)(C20H22Br2N2O4)]·14H2O (1-Ln, Ln = Sm to Lu). The molecular structure of these sandwich-type complexes is formed by the LnIII ion in a biaugmented trigonal prismatic geometry, which occupies the external O4 site of the organic ligand and the vacant site of the lacunary polyoxometalate (POM) unit. The empty N2O2 coordination site of the organic ligand allows its unprecedented folding, which displays a relative perpendicular arrangement of aromatic groups. Weak Br···Br and π-π interactions established between adjacent molecular units govern the crystal packing, which results in the formation of assemblies containing six hybrid species assembled in a chairlike conformation. 1-Gd and 1-Yb display slow relaxation of the magnetization after the application of an external magnetic field with maxima in the out-of-phase magnetic susceptibility plots below ∼5-6 K, which is ascribed to the presence of various relaxation mechanisms. Moreover, photoluminescent emission is sensitized for 1-Sm and 1-Eu in the visible region and 1-Er and 1-Yb in the NIR. In contrast, the quenching of metal-centered luminescence in the 1-Tb derivative has been attributed to the out-of-pocket coordination mode of the lanthanide center within the POM fragment. It is demonstrated that the 1-Yb dual magneto-luminescent material represents the first lanthanide-containing POM reported to date with simultaneous slow magnetic relaxation and NIR emission. Solution stability of the hybrid molecular species in water is also confirmed by ESI-mass spectrometry experiments carried out for 1-Tb and 1-Tm.

4.
J Am Chem Soc ; 143(39): 15912-15917, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34547207

RESUMEN

Cocrystallization of 7,7',8,8'-tetracyanoquinodimethane radical anion (TCNQ-•) and 3-methylpyridinium-1,2,3,5-dithiadiazolyl radical cation (3-MepyDTDA+•) afforded isostructural acetonitrile (MeCN) or propionitrile (EtCN) solvates containing cofacial π dimers of homologous components. Loss of lattice solvent from the diamagnetic solvates above 366 K affords a high-temperature paramagnetic phase containing discrete TCNQ-• and weakly bound π dimers of 3-MepyDTDA+•, as evidenced by X-ray diffraction methods and magnetic susceptibility measurements. Below 268 K, a first-order phase transition occurs, leading to a low-temperature diamagnetic phase with TCNQ-• σ dimer and π dimers of 3-MepyDTDA+•. This study reveals the first example of cooperative interactions between two different organic radical ions leading to magnetic bistability, and these results are central to the future design of multicomponent functional molecular materials.

5.
Science ; 370(6516): 587-592, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33122382

RESUMEN

Magnets derived from inorganic materials (e.g., oxides, rare-earth-based, and intermetallic compounds) are key components of modern technological applications. Despite considerable success in a broad range of applications, these inorganic magnets suffer several drawbacks, including energetically expensive fabrication, limited availability of certain constituent elements, high density, and poor scope for chemical tunability. A promising design strategy for next-generation magnets relies on the versatile coordination chemistry of abundant metal ions and inexpensive organic ligands. Following this approach, we report the general, simple, and efficient synthesis of lightweight, molecule-based magnets by postsynthetic reduction of preassembled coordination networks that incorporate chromium metal ions and pyrazine building blocks. The resulting metal-organic ferrimagnets feature critical temperatures up to 242°C and a 7500-oersted room-temperature coercivity.

6.
J Inorg Biochem ; 207: 111051, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32371293

RESUMEN

Five new coordination polymers (CPs) constructed of aminopyridine-2-carboxylate (ampy) ligand have been synthesized and fully characterized. Three of them correspond to metal-organic chains built from the coordination of ampy to sodium and lanthanides with formulae [MNa(ampy)4]n (M = terbium (2), erbium (1) and ytterbium (3)) resembling a previously reported dysprosium material which shows anticancer activity. On another level, the reaction of Hampy with cobalt and copper ions ({[CoK(ampy)3(H2O)3](H2O)3}n (4) and [Cu(ampy)2]n (5)) lead to CPs with variable dimensionalities, which gives the opportunity of analyzing the structural properties of this new family. Lanthanide materials display solid state intense photoluminescent emissions in both the visible and near-infrared region and exhibit slow relaxation of magnetization with frequency dependence of the out-of-phase susceptibility. More interestingly, in our search for multifunctional materials, we have carried out antitumor measurements of these compounds. These multidisciplinary studies of metal complexes open up the possibility for further exploring the applications in the fields of metal-based drugs.


Asunto(s)
Aminopiridinas/química , Antineoplásicos/química , Ácidos Carboxílicos/química , Estructuras Metalorgánicas/química , Aminopiridinas/farmacología , Animales , Antineoplásicos/farmacología , Ácidos Carboxílicos/farmacología , Proliferación Celular/efectos de los fármacos , Cobalto/química , Complejos de Coordinación/química , Cobre/química , Cristalografía por Rayos X/métodos , Células HT29 , Células Hep G2 , Humanos , Elementos de la Serie de los Lantanoides/química , Ligandos , Luminiscencia , Magnetismo , Estructuras Metalorgánicas/farmacología , Ratones , Modelos Moleculares , Polímeros/química
7.
Dalton Trans ; 49(19): 6328-6340, 2020 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-32342075

RESUMEN

Construction of efficient multifunctional materials is one of the greatest challenges of our time. We herein report the magnetic and catalytic characterization of dinuclear [CoIIICoII(HL1)2(EtOH)(H2O)]Cl·2H2O (1) and trinuclear [CoIIICoII2(HL2)2(L2)Cl2]·3H2O (2) mixed valence complexes. Relevant structural features of the complexes have been mentioned to correlate with their magnetic and catalytic properties. Unique structural features, especially in terms of significant distortions around the CoII centre(s), prompted us to test both spin-orbit coupling (SOC) and zero field splitting (ZFS) methodologies for the systems. The positive sign of D values has been established from X-band EPR spectra recorded in the 5-40 K temperature range and reaffirmed by CAS/NEVPT2 calculations. ZFS tensors are also extracted for the compounds along with CoIIGaIII and CoIIZnIICoIII model species. Interestingly, 1 shows slow relaxation of magnetization below 6.5 K in the presence of a 1000 Oe external dc field with two relaxation processes (Ueff = 37.0 K with τ0 = 1.57 × 10-8 s for the SR process and Ueff = 7 K with τ0 = 1.66 × 10-6 s for the FR process). As mixed valence cobalt complexes with various nuclearities are central to the quest for water oxidation catalysts, we were prompted to explore their features and to our surprise, water oxidation ability has been realized for both 1 and 2 with significant nuclearity control.

8.
Angew Chem Int Ed Engl ; 59(26): 10306-10310, 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32080955

RESUMEN

Silicon-mediated fluoride abstraction is demonstrated as a means of generating the first fluorido-cyanido transition metal complexes. This new synthetic approach is exemplified by the synthesis and characterization of the heteroleptic complexes, trans-[MIV F4 (CN)2 ]2- (M=Re, Os), obtained from their homoleptic [MIV F6 ]2- parents. As shown by combined high-field electron paramagnetic resonance spectroscopy and magnetization measurements, the partial substitution of fluoride by cyanide ligands leads to a marked increase in the magnetic anisotropy of trans-[ReF4 (CN)2 ]2- as compared to [ReF6 ]2- , reflecting the severe departure from an ideal octahedral (Oh point group) ligand field. This methodology paves the way toward the realization of new heteroleptic transition metal complexes that may be used as highly anisotropic building-blocks for the design of high-performance molecule-based magnetic materials.

9.
Med Chem ; 16(3): 422-430, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30931864

RESUMEN

BACKGROUND: The World Health Organization catalogues illnesses such as Leishmaniasis as neglected diseases, due to low investment in new drugs to fight them. The search of novel and non-side effects anti-parasitic compounds is one of the urgent needs for the Third World. The use of triazolopyrimidines and their metallic complexes has demonstrated hopeful results in this field. OBJECTIVE: This work studies the antiparasitic efficacy of a series of 5,7-dimethyl-1,2,4- triazolo[1,5-a]pyrimidine first row transition metal complexes against three leishmania spp. strains. METHODS: The in vitro antiproliferation of promastigote forms of different strains of leishmania spp. (L. infantum, L. braziliensis and L donovani) and the cytotoxicity in macrophage host cells are reported here. The antiparasitic assays have been complemented with enzymatic tests to elucidate the mechanisms of action. New crystal structure description, thermal analysis, magnetic susceptibility and magnetization experiments have also been carried out in order to present a whole characterization of the studied compounds and interesting physical properties besides the biological tests. RESULTS: The results of antiproliferation screening and cytotoxicity show great antiparasitic efficacy in the studied complexes. The superoxide dismutase enzymatic assays exhibit a different behaviour according to the thermochromic triazolopyrimidine form tested. CONCLUSION: Antiproliferative assays and enzymatic tests corroborate the synergetic leishmanicidal effect present in coordination triazolopyrimidine complexes. The changes in coordination sphere derived from thermochromism affect the physical properties as well as the biological efficacy.


Asunto(s)
Complejos de Coordinación/farmacología , Pirimidinas/farmacología , Triazoles/farmacología , Tripanocidas/farmacología , Animales , Línea Celular , Color , Complejos de Coordinación/síntesis química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Leishmania braziliensis/efectos de los fármacos , Leishmania donovani/efectos de los fármacos , Leishmania infantum/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Parasitaria , Pirimidinas/síntesis química , Superóxido Dismutasa/metabolismo , Temperatura , Triazoles/síntesis química , Tripanocidas/síntesis química
10.
Dalton Trans ; 47(36): 12783-12794, 2018 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-30152820

RESUMEN

We have designed and synthesized eight isostructural 1D coordination polymers (CPs) with the general formula {[Ln(aapc)3(DMF)]}n [where Ln(iii) = Y (2), La (3), Nd (4), Eu (5), Gd (6), Tb (7), Dy (8), Er (9); and aapc = 3-((anthraquinone-1-yl)amino)propanoate]. These CPs consist of Ln-carboxylate infinite rods in which the bulky anthraquinone scaffolds arise from it in such a way that the resulting supramolecular packing exhibits isolated 1D chains. Solution structures have been corroborated through NMR methods including PGSE and EXSY NMR studies and, due to the presence of lanthanide ions, magnetic and luminescence properties have been studied. Alternating current magnetic measurements of compound 8 show slow relaxation of the magnetization, a characteristic of single molecule magnets (SMMs). The evaluation of solid-state photophysical properties reveals that the aapc scaffold sensitizes lanthanide(iii) based emission of compounds 4-9 both in the visible and near-infrared (NIR) regions at 10 K.

11.
Inorg Chem ; 56(15): 8768-8775, 2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-28731689

RESUMEN

Isostructural dinuclear dysprosium and yttrium coordination compounds based on the 5-nitropicolinic carboxylate ligand were synthesized and characterized. The formation of these air-stable complexes is achieved via solvothermal routes employing water as the reaction solvent. The dysprosium-based complex exhibits single-molecule magnet behavior with frequency dependence of the out-of-phase susceptibility at zero direct-current field. High-resolution mass spectrometry (electrospray ionization) experiments and advanced NMR methods including diffusion NMR techniques were applied on the diamagnetic yttrium analogue and established that these species retained their solid-state structure in solution with hydrodynamic radii of 6.5 Å. Full 1H, 13C, 15N, 89Y, Δ1Hcoord, Δ13Ccoord, and Δ15Ncoord NMR data are given, and through the analysis of the Ramsey equation, the first electronic insights of these derivatives are provided.

12.
Inorg Chem ; 56(14): 7985-7997, 2017 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-28661123

RESUMEN

The sequential reaction of 2-((6-(hydroxymethyl)pyridin-2-yl)-methyleneamino)phenol (LH2), LnCl3·6H2O, and 1,1,1-trifluoroacetylacetone (Htfa) in the presence of Et3N afforded [Ln(LH) (tfa)2] [Ln = Dy3+ (1), Ln = Tb3+ (2), and Ln = Gd3+ (3)], while under the same reaction conditions, but in the absence of the coligand, another series of mononuclear complexes, namely, [Ln(LH)2]·Cl·2MeOH] [Ln = Dy3+ (4) and Tb3+ (5)] are obtained. Single-crystal X-ray diffraction analysis revealed that the former set contains a mono-deprotonated [LH]- and two tfa ligands, while the latter set comprises of two mono-deprotonated [LH]- ligands that are nearly perpendicular to each other at an angle of 86.9°. Among these complexes, 2 exhibited a ligand-sensitized lanthanide-characteristic emission. Analyses of the alternating current susceptibility measurements reveal the presence of single-molecule magnet behavior for 1 and 4, in the presence of direct-current field, with effective energy barriers of 4.6 and 44.4 K, respectively. The enhancement of the effective energy barrier of the latter can be attributed to the presence of a large energy gap between the ground and first excited Kramers doublets, triggered by the change in coordination environments around the lanthanide centers.

13.
Dalton Trans ; 46(13): 4278-4286, 2017 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-28280808

RESUMEN

A series of trimetallic Zn-Dy-Zn complexes of the general formula [ZnX(µ-L)Dy(µ-L)XZn]Y·nS, where H2L is the compartmental ligand N,N'-dimethyl-N,N'-bis(2-hydroxy-3-formyl-5-bromobenzyl)ethylenediamine, X is the coligand (X = Cl, Br, I and N3), Y is the counteranion and S are the crystallization solvent molecules have been synthesized and magnetically characterized. In all these complexes, the Dy(iii) ions exhibit DyO8 coordination environments with a slightly distorted square-antiprism D4d symmetry. Due to the disposition of the oxygen atoms around the Dy(iii) ions, large easy-axis anisotropy is expected, which is responsible for the high thermal energy barriers for the reversal of the magnetization observed at zero field (in the 144-170 K range for all complexes). A preliminary correlation between the disposition of the oxygen atoms of the ligand (phenoxo and aldehyde) in the DyO8 coordination sphere and the value of Ueff has been established.

14.
Inorg Chem ; 55(21): 11230-11248, 2016 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-27715038

RESUMEN

Detailed structural, magnetic, and photoluminescence characterization of a family of new compounds based on 5-cyanoisophthalate (CNip) ligand and several transition metal or lanthanide ions, namely, [Cu3(µ3-CNip)2(µ-H2O)2(µ3-OH)2]n (1), {[Co3(µ4-CNip)3(DMF)4]·âˆ¼2DMF}n (2), [Cd(µ4-CNip) (DMF)]n (3), {[Ln2(µ4-CNip)(µ3-CNip)2(DMF)4]·âˆ¼DMF·H2O}n (4-Ln) (with LnIII = Tb, Dy, and Er), {[Gd6(µ3-CNip)5(µ4-CNip)3(µ-form)2(H2O) (DMF)10]·âˆ¼3DMF·3H2O}n (5), {[Zn32(µ4-CNip)12(µ-CNip)12(µ4-O)8(H2O)24]·âˆ¼12DMF}n (6) (where DMF = dimethylformamide, form = formate), is reported. The large structural diversity found in the system may be explained mainly in terms of the coordination characteristics that are inherent to the employed metal ions, the coordination versatility of the dicarboxylic ligand and the synthetic conditions. Interestingly, some crystal structures (three-dimensional (3D) frameworks of 4-Ln and 5 and 3D network of 6) exhibit open architectures containing large solvent-occupied void systems, among which 5 reveals permanent porosity as confirmed by N2 adsorption measurements at 77 K. Magnetic direct current (dc) susceptibility data on compounds 1, 2, and 5 were measured. Moreover, compounds 2, 4-Dy, 4-Er, and 5 show slow magnetic relaxation, from which it is worth highlighting the effective energy barrier of 44 K at zero dc field for the dysprosium counterpart. Compound 5 also deserves to be mentioned given the few 3D Gd-organic frameworks reported examples. Photophysical properties were also accomplished at different temperatures, confirming both the fluorescent emission of 5-cyanoisophthalate ligands when coordinated to cadmium ions in 3 and their capacity to sensitize the long-lived fluorescence of the selected lanthanide ions in 4-Ln. Broken symmetry and time-dependent density functional theory computational calculations support the experimental luminescence and magnetic properties.

15.
Inorg Chem ; 55(17): 8502-13, 2016 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-27500422

RESUMEN

A mononuclear cobalt(II) complex [Co(3,5-dnb)2(py)2(H2O)2] {3,5-Hdnb = 3,5-dinitrobenzoic acid; py = pyridine} was isolated in two polymorphs, in space groups C2/c (1) and P21/c (2). Single-crystal X-ray diffraction analyses reveal that 1 and 2 are not isostructural in spite of having equal formulas and ligand connectivity. In both structures, the Co(II) centers adopt octahedral {CoN2O4} geometries filled by pairs of mutually trans terminal 3,5-dnb, py, and water ligands. However, the structures of 1 and 2 disclose distinct packing patterns driven by strong intermolecular O-H···O hydrogen bonds, leading to their 0D→2D (1) or 0D→1D (2) extension. The resulting two-dimensional layers and one-dimensional chains were topologically classified as the sql and 2C1 underlying nets, respectively. By means of DFT theoretical calculations, the energy variations between the polymorphs were estimated, and the binding energies associated with the noncovalent interactions observed in the crystal structures were also evaluated. The study of the direct-current magnetic properties, as well as ab initio calculations, reveal that both 1 and 2 present a strong easy-plane magnetic anisotropy (D > 0), which is larger for the latter polymorph (D is found to exhibit values between +58 and 117 cm(-1) depending on the method). Alternating current dynamic susceptibility measurements show that these polymorphs exhibit field-induced slow relaxation of the magnetization with Ueff values of 19.5 and 21.1 cm(-1) for 1 and 2, respectively. The analysis of the whole magnetic data allows the conclusion that the magnetization relaxation in these polymorphs mainly takes place through a virtual excited state (Raman process). It is worth noting that despite the notable difference between the supramolecular networks of 1 and 2, they exhibit almost identical magnetization dynamics. This fact suggests that the relaxation process is intramolecular in nature and that the virtual state involved in the two-phonon Raman process lies at a similar energy in polymorphs 1 and 2 (∼20 cm(-1)). Interestingly, this value is recurrent in Co(II) single-ion magnets, even for those displaying different coordination number and geometry.

16.
Dalton Trans ; 45(23): 9712-26, 2016 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-27230817

RESUMEN

Eleven dimetallic Zn(II)-Ln(III) complexes of the general formula [Zn(µ-L)(µ-OAc)Ln(NO3)2]·CH3CN (Ln(III) = Pr (1), Nd (2), Sm (3), Eu (4), Gd (5), Tb (6), Dy (7), Ho (8), Er (9), Tm (10), Yb (11)) have been prepared in a one-pot reaction from the compartmental ligand N,N'-dimethyl-N,N'-bis(2-hydroxy-3-formyl-5-bromo-benzyl)ethylenediamine (H2L). In all these complexes, the Zn(II) ions occupy the internal N2O2 site whereas the Ln(III) ions show preference for the O4 external site. Both metallic ions are bridged by an acetate bridge, giving rise to triple mixed diphenoxido/acetate bridged Zn(II)Ln(III) compounds. The Nd, Dy, Er and Yb complexes exhibit field induced single-ion magnet (SIM) behaviour, with Ueff values ranging from 14.12 to 41.55 K. The Er complex shows two relaxation processes, but only the second relaxation process with an energy barrier of 21.0 K has been characterized. The chromophoric L(2-) ligand is able to act as an "antenna" group, sensitizing the near-infrared (NIR) Nd(III) and Yb(III)-based luminescence in complexes 2 and 11 and therefore, both compounds can be considered as magneto-luminescent materials. In addition, the Sm(III), Eu(III) and Tb(III) derivatives exhibit characteristic emissions in the visible region.

17.
Inorg Chem ; 55(9): 4428-40, 2016 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-27078745

RESUMEN

The new dinuclear Zn(II)-Dy(III) and trinuclear Zn(II)-Dy(III)-Zn(II) complexes of formula [(LZnBrDy(ovan) (NO3)(H2O)](H2O)·0.5(MeOH) (1) and [(L(1)ZnBr)2Dy(MeOH)2](ClO4) (3) (L and L(1) are the dideprotonated forms of the N,N'-2,2-dimethylpropylenedi(3-methoxysalicylideneiminato and 2-{(E)-[(3-{[(2E,3E)-3-(hydroxyimino)butan-2-ylidene ]amino}-2,2-dimethylpropyl)imino]methyl}-6-methoxyphenol Schiff base compartmental ligands, respectively) have been prepared and magnetostructurally characterized. The X-ray structure of 1 indicates that the Dy(III) ion exhibits a DyO9 coordination sphere, which is made from four O atoms coming from the compartmental ligand (two methoxy terminal groups and two phenoxido bridging groups connecting Zn(II) and Dy(III) ions), other four atoms belonging to the chelating nitrato and ovanillin ligands, and the last one coming to the coordinated water molecule. The structure of 3 shows the central Dy(III) ion surrounded by two L(1)Zn units, so that the Dy(III) and Zn(II) ions are linked by phenoxido/oximato bridging groups. The Dy ion is eight-coordinated by the six O atoms afforded by two L(1) ligands and two O atoms coming from two methanol molecules. Alternating current (AC) dynamic magnetic measurements of 1, 3, and the previously reported dinuclear [LZnClDy(thd)2] (2) complex (where thd = 2,2,6,6-tetramethyl-3,5-heptanedionato ligand) indicate single molecule magnet (SMM) behavior for all these complexes with large thermal energy barriers for the reversal of the magnetization and butterfly-shaped hysteresis loops at 2 K. Ab initio calculations on 1-3 show a pure Ising ground state for all of them, which induces almost completely suppressed quantum tunnelling magnetization (QTM), and thermally assisted quantum tunnelling magnetization (TA-QTM) relaxations via the first excited Kramers doublet, leading to large energy barriers, thus supporting the observation of SMM behavior. The comparison between the experimental and theoretical magnetostructural data for 1-3 has allowed us to draw some conclusions about the influence of ligand substitution around the Dy(III) on the SMM properties. Finally, these SMMs exhibit metal- and ligand-centered dual emissions in the visible region, and, therefore, they can be considered as magnetoluminescent bifunctional molecular materials.

18.
Dalton Trans ; 45(2): 591-8, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26610692

RESUMEN

We have synthesized a new family of metal-organic-frameworks (MOFs) based on a 9,10-anthracenedicarboxylate linker. We report the formation of lanthanide-based MOFs using soft solvothermal routes with dimethylformamide as a solvent. These materials display intense photoluminescence properties in the solid state at room temperature. What is more interesting is, some of them exhibit slow relaxation of magnetization with activation barriers of 22.9, 15.4, 52.7, 13.0 and 16.2 K for Nd(3+), Gd(3+), Dy(3+), Er(3+) and Yb(3+), respectively. To the best of our knowledge, Nd(3+) and Yb(3+) materials are the first examples of 3D- and 2D-MOFs, respectively, that show slow relaxation of magnetization.

19.
Polymers (Basel) ; 8(2)2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-30979134

RESUMEN

We report the in situ formation of two novel metal-organic frameworks based on terbium and dysprosium ions using azobenzene-4,4'-dicarboxylic acid (H2abd) as ligand, synthesized by soft hydrothermal routes. Both materials show isostructural three-dimensional networks with channels along a axis and display intense photoluminescence properties in the solid state at room temperature. Textural properties of the metal-organic frameworks (MOFs) have been fully characterized although no appreciable porosity was obtained. Magnetic properties of these materials were studied, highlighting the dysprosium material displays slightly frequency-dependent out of phase signals when measured under zero external field and under an applied field of 1000 Oe.

20.
Chemistry ; 21(44): 15785-96, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26361252

RESUMEN

Three new Dy complexes have been prepared according to a complex-as-ligand strategy. Structural determinations indicate that the central Dy ion is surrounded by two LZn units (L(2-) is the di-deprotonated form of the N2 O2 compartmental N,N'-2,2-dimethylpropylenedi(3-methoxysalicylideneiminato) Schiff base. The Dy ions are nonacoordinate to eight oxygen atoms from the two L ligands and to a water molecule. The Zn ions are pentacoordinate in all cases, linked to the N2 O2 atoms from L, and the apical position of the Zn coordination sphere is occupied by a water molecule or bromide or chloride ions. These resulting complexes, formulated (LZnX)-Dy-(LZnX), are tricationic with X=H2 O and monocationic with X=Br or Cl. They behave as field-free single-molecule magnets (SMMs) with effective energy barriers (Ueff ) for the reversal of the magnetization of 96.9(6) K with τ0 =2.4×10(-7)  s, 146.8(5) K with τ0 =9.2×10(-8)  s, and 146.1(10) K with τ0 =9.9×10(-8)  s for compounds with ZnOH2 , ZnBr, and ZnCl motifs, respectively. The Cole-Cole plots exhibit semicircular shapes with α parameters in the range of 0.19 to 0.29, which suggests multiple relaxation processes. Under a dc applied magnetic field of 1000 Oe, the quantum tunneling of magnetization (QTM) is partly or fully suppressed and the energy barriers increase to Ueff =128.6(5) K and τ0 =1.8×10(-8)  s for 1, Ueff =214.7 K and τ0 =9.8×10(-9)  s for 2, and Ueff =202.4 K and τ0 =1.5×10(-8)  s for 3. The two pairs of largely negatively charged phenoxido oxygen atoms with short DyO bonds are positioned at opposite sides of the Dy(3+) ion, which thus creates a strong crystal field that stabilizes the axial MJ =±15/2 doublet as the ground Kramers doublet. Although the compound with the ZnOH2 motifs possesses the larger negative charges on the phenolate oxygen atoms, as confirmed by using DFT calculations, it exhibits the larger distortions of the DyO9 coordination polyhedron from ideal geometries and a smaller Ueff value. Ab initio calculations support the easy-axis anisotropy of the ground Kramers doublet and predict zero-field SMM behavior through Orbach and TA-QTM relaxations via the first excited Kramers doublet, which leads to large energy barriers. In accordance with the experimental results, ab initio calculations have also shown that, compared with water, the peripheral halide ligands coordinated to the Zn(2+) ions increase the barrier height when the distortions of the DyO9 have a negative effect. All the complexes exhibit metal-centered luminescence after excitation into the UV π-π* absorption band of ligand L(2-) at λ=335 nm, which results in the appearance of the characteristic Dy(III) ((4) F9/2 →(6) HJ/2 ; J=15/2, 13/2) emission bands in the visible region.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...