Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Enzymol ; 672: 29-54, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35934480

RESUMEN

Helicases function in most biological processes that utilize RNA or DNA nucleic acids including replication, recombination, repair, transcription, splicing, and translation. They are motor proteins that bind ATP and then catalyze hydrolysis to release energy which is transduced for conformational changes. Different conformations correspond to different steps in a process that results in movement of the enzyme along the nucleic acid track in a unidirectional manner. Some helicases such as DEAD-box helicases do not translocate, but these enzymes transduce chemical energy from ATP hydrolysis to unwind secondary structure in DNA or RNA. Some helicases function as monomers while others assemble into defined structures, either dimers or higher order oligomers. Dda helicase from bacteriophage T4 and NS3 helicase domain from the hepatitis C virus are examples of monomeric helicases. These helicases can bind to single-stranded DNA in a manner that appears like train engines on a track. When monomeric helicases align on DNA, the activity of the enzymes increases. Helicase activity can include the rate of duplex unwinding and the total number of base pairs melted during a single binding event or processivity. Dda and NS3h are considered as having low processivity, unwinding fewer than 50 base pairs per binding event. Here, we report fusing two molecules of NS3h molecules together through genetically linking the C-terminus of one molecule to the N-terminus of a second NS3h molecule. We observed increased processivity relative to NS3h possibly arising from the increased probability that at least one of the helicases will completely unwind the DNA prior to dissociation. The dimeric enzyme also binds DNA more like the full-length NS3 helicase. Finally, the dimer can displace streptavidin from biotin-labeled oligonucleotide, whereas monomeric NS3h cannot.


Asunto(s)
ADN Helicasas , ADN de Cadena Simple , Adenosina Trifosfato/metabolismo , ADN/química , ADN Helicasas/química , ARN
4.
J Biol Chem ; 278(45): 43991-4000, 2003 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-12944413

RESUMEN

The serotonin transporter (SERT) is an oligomeric glycoprotein with two sialic acid residues on each of two complex oligosaccharide molecules. In this study, we investigated the contribution of N-glycosyl modification to the structure and function of SERT in two model systems: wild-type SERT expressed in sialic acid-defective Lec4 Chinese hamster ovary (CHO) cells and a mutant form (after site-directed mutagenesis of Asn-208 and Asn-217 to Gln) of SERT, QQ, expressed in parental CHO cells. In both systems, SERT monomers required modification with both complex oligosaccharide residues to associate with each other and to function in homo-oligomeric forms. However, defects in sialylated N-glycans did not alter surface expression of the SERT protein. Furthermore, in heterologous (CHO and Lec4 cells) and endogenous (placental choriocarcinoma JAR cells) expression systems, we tested whether glycosyl modification also manipulates the hetero-oligomeric interactions of SERT, specifically with myosin IIA. SERT is phosphorylated by cGMP-dependent protein kinase G through interactions with anchoring proteins, and myosin is a protein kinase G-anchoring protein. A physical interaction between myosin and SERT was apparent; however, defects in sialylated N-glycans impaired association of SERT with myosin as well as the stimulation of the serotonin uptake function in the cGMP-dependent pathway. We propose that sialylated N-glycans provide a favorable conformation to SERT that allows the transporter to function most efficiently via its protein-protein interactions.


Asunto(s)
Proteínas Portadoras/química , Glicoproteínas de Membrana/química , Proteínas de Transporte de Membrana , Proteínas del Tejido Nervioso , Animales , Células CHO , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Coriocarcinoma , Cricetinae , GMP Cíclico/farmacología , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Femenino , Expresión Génica , Glicosilación , Sustancias Macromoleculares , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Mutagénesis Sitio-Dirigida , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/genética , Miosina Tipo IIA no Muscular/genética , Miosina Tipo IIA no Muscular/metabolismo , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Fosforilación , Embarazo , Conformación Proteica , Ratas , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Relación Estructura-Actividad , Transfección , Células Tumorales Cultivadas , Neoplasias Uterinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...