Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Protoc ; 9(3): 694-710, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24577360

RESUMEN

The ability to isolate and analyze rare circulating tumor cells (CTCs) has the potential to further our understanding of cancer metastasis and enhance the care of cancer patients. In this protocol, we describe the procedure for isolating rare CTCs from blood samples by using tumor antigen-independent microfluidic CTC-iChip technology. The CTC-iChip uses deterministic lateral displacement, inertial focusing and magnetophoresis to sort up to 107 cells/s. By using two-stage magnetophoresis and depletion antibodies against leukocytes, we achieve 3.8-log depletion of white blood cells and a 97% yield of rare cells with a sample processing rate of 8 ml of whole blood/h. The CTC-iChip is compatible with standard cytopathological and RNA-based characterization methods. This protocol describes device production, assembly, blood sample preparation, system setup and the CTC isolation process. Sorting 8 ml of blood sample requires 2 h including setup time, and chip production requires 2-5 d.


Asunto(s)
Separación Celular/métodos , Técnicas Analíticas Microfluídicas/métodos , Células Neoplásicas Circulantes , Humanos , Proteínas de Insectos , Imanes
2.
Sci Transl Med ; 5(179): 179ra47, 2013 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-23552373

RESUMEN

Circulating tumor cells (CTCs) are shed into the bloodstream from primary and metastatic tumor deposits. Their isolation and analysis hold great promise for the early detection of invasive cancer and the management of advanced disease, but technological hurdles have limited their broad clinical utility. We describe an inertial focusing-enhanced microfluidic CTC capture platform, termed "CTC-iChip," that is capable of sorting rare CTCs from whole blood at 10(7) cells/s. Most importantly, the iChip is capable of isolating CTCs using strategies that are either dependent or independent of tumor membrane epitopes, and thus applicable to virtually all cancers. We specifically demonstrate the use of the iChip in an expanded set of both epithelial and nonepithelial cancers including lung, prostate, pancreas, breast, and melanoma. The sorting of CTCs as unfixed cells in solution allows for the application of high-quality clinically standardized morphological and immunohistochemical analyses, as well as RNA-based single-cell molecular characterization. The combination of an unbiased, broadly applicable, high-throughput, and automatable rare cell sorting technology with generally accepted molecular assays and cytology standards will enable the integration of CTC-based diagnostics into the clinical management of cancer.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Separación Celular/métodos , Microfluídica/métodos , Células Neoplásicas Circulantes/patología , Línea Celular Tumoral , Forma de la Célula , Tamaño de la Célula , Femenino , Humanos , Fenómenos Magnéticos , Masculino , ARN Neoplásico/metabolismo
3.
Biophys J ; 103(7): 1510-7, 2012 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-23062343

RESUMEN

We demonstrate an accurate, quantitative, and label-free optical technology for high-throughput studies of receptor-ligand interactions, and apply it to TATA binding protein (TBP) interactions with oligonucleotides. We present a simple method to prepare single-stranded and double-stranded DNA microarrays with comparable surface density, ensuring an accurate comparison of TBP activity with both types of DNA. In particular, we find that TBP binds tightly to single-stranded DNA, especially to stretches of polythymine (poly-T), as well as to the traditional TATA box. We further investigate the correlation of TBP activity with various lengths of DNA and find that the number of TBPs bound to DNA increases >7-fold as the oligomer length increases from 9 to 40. Finally, we perform a full human genome analysis and discover that 35.5% of human promoters have poly-T stretches. In summary, we report, for the first time to our knowledge, the activity of TBP with poly-T stretches by presenting an elegant stepwise analysis of multiple techniques: discovery by a novel quantitative detection of microarrays, confirmation by a traditional gel electrophoresis, and a full genome prediction with computational analyses.


Asunto(s)
ADN/genética , ADN/metabolismo , Proteína de Unión a TATA-Box/metabolismo , Secuencia de Bases , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Humanos , Poli T/metabolismo , Unión Proteica , Especificidad por Sustrato , TATA Box
4.
Biosens Bioelectron ; 26(8): 3432-7, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21342761

RESUMEN

We demonstrate detection of whole viruses and viral proteins with a new label-free platform based on spectral reflectance imaging. The Interferometric Reflectance Imaging Sensor (IRIS) has been shown to be capable of sensitive protein and DNA detection in a real time and high-throughput format. Vesicular stomatitis virus (VSV) was used as the target for detection as it is well-characterized for protein composition and can be modified to express viral coat proteins from other dangerous, highly pathogenic agents for surrogate detection while remaining a biosafety level 2 agent. We demonstrate specific detection of intact VSV virions achieved with surface-immobilized antibodies acting as capture probes which is confirmed using fluorescence imaging. The limit of detection is confirmed down to 3.5 × 10(5)plaque-forming units/mL (PFUs/mL). To increase specificity in a clinical scenario, both the external glycoprotein and internal viral proteins were simultaneously detected with the same antibody arrays with detergent-disrupted purified VSV and infected cell lysate solutions. Our results show sensitive and specific virus detection with a simple surface chemistry and minimal sample preparation on a quantitative label-free interferometric platform.


Asunto(s)
Técnicas Biosensibles/métodos , Interferometría/métodos , Virus de la Estomatitis Vesicular Indiana/aislamiento & purificación , Fluorescencia , Sensibilidad y Especificidad , Proteínas Virales/análisis , Virión/aislamiento & purificación
5.
Biosens Bioelectron ; 25(7): 1789-95, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20097056

RESUMEN

A novel method is proposed for direct detection of DNA hybridization on microarrays. Optical interferometry is used for label-free sensing of biomolecular accumulation on glass surfaces, enabling dynamic detection of interactions. Capabilities of the presented method are demonstrated by high-throughput sensing of solid-phase hybridization of oligonucleotides. Hybridization of surface immobilized probes with 20 base pair-long target oligonucleotides was detected by comparing the label-free microarray images taken before and after hybridization. Through dynamic data acquisition during denaturation by washing the sample with low ionic concentration buffer, melting of duplexes with a single-nucleotide mismatch was distinguished from perfectly matching duplexes with high confidence interval (>97%). The presented technique is simple, robust, and accurate, and eliminates the need of using labels or secondary reagents to monitor the oligonucleotide hybridization.


Asunto(s)
Análisis Mutacional de ADN/instrumentación , Hibridación in Situ/instrumentación , Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , Mutación Puntual/genética , Polimorfismo de Nucleótido Simple/genética , Disparidad de Par Base/genética , Diseño de Equipo , Análisis de Falla de Equipo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Coloración y Etiquetado
6.
Biosens Bioelectron ; 25(2): 275-81, 2009 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-19674885

RESUMEN

Quantitative measurement of affinities and kinetics of various biomolecular interactions such as protein-protein, protein-DNA and receptor-ligand is central to our understanding of basic molecular and cellular functions and is useful for therapeutic evaluation. Here, we describe a laser-scanning quantitative imaging method, referred to as spectral-domain optical coherence phase microscopy, as an optical platform for label-free detection of biomolecular interactions. The instrument is based on a confocal interferometric microscope that enables depth-resolved quantitative phase measurements on sensor surface with high spatial resolution and phase stability. We demonstrate picogram per square millimeter surface mass sensitivity, and show its sensing capability by presenting static and dynamic detection of multiplexed protein microarray as immobilized antigens capture their corresponding antibodies.


Asunto(s)
Técnicas Biosensibles/instrumentación , Interferometría/instrumentación , Microscopía Confocal/instrumentación , Microscopía de Contraste de Fase/instrumentación , Análisis por Matrices de Proteínas/instrumentación , Análisis Espectral/instrumentación , Tomografía de Coherencia Óptica/instrumentación , Electrodos , Diseño de Equipo , Análisis de Falla de Equipo
7.
Biosens Bioelectron ; 25(1): 167-72, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19628383

RESUMEN

A primary advantage of label-free detection methods over fluorescent measurements is its quantitative detection capability, since an absolute measure of adsorbed material facilitates kinetic characterization of biomolecular interactions. Interferometric techniques relate the optical phase to biomolecular layer density on the surface, but the conversion factor has not previously been accurately determined. We present a calibration method for phase shift measurements and apply it to surface-bound bovine serum albumin, immunoglobulin G, and single-stranded DNA. Biomolecules with known concentrations dissolved in salt-free water were spotted with precise volumes on the array surface and upon evaporation of the water, left a readily calculated mass. Using our label-free technique, the calculated mass of the biolayer was compared with the measured thickness, and we observed a linear dependence over 4 orders of magnitude. We determined that the widely accepted conversion of 1 nm of thickness corresponds to approximately 1 ng/mm(2) surface density held reasonably well for these substances and through our experiments can now be further specified for different types of biomolecules. Through accurate calibration of the dependence of thickness on surface density, we have established a relation allowing precise determination of the absolute number of molecules for single-stranded DNA and two different proteins.


Asunto(s)
Técnicas Biosensibles/métodos , ADN de Cadena Simple/análisis , Inmunoglobulina G/análisis , Albúmina Sérica Bovina/análisis , Adsorción , Animales , Técnicas Biosensibles/instrumentación , Calibración , Bovinos , Diseño de Equipo , Óptica y Fotónica , Conejos
8.
Anal Chem ; 81(2): 625-30, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19061409

RESUMEN

The conformation of a three-dimensional polymeric coating (copoly(DMA-NAS-MAPS)) and immobilization and hybridization of DNA strands on the polymer coated surface are investigated. A conformational change, specifically the swelling of the surface adsorbed polymer upon hydration, is quantified in conjunction with the application of this polymer coating for DNA microarray applications. Fluorescently labeled short DNA strands (23mers) covalently linked to the functional groups on the adsorbed polymer are used as probes to measure the swelling of the polymer. A fluorescence microscopy technique, Spectral Self-Interference Fluorescence Microscopy (SSFM), is utilized to directly measure the change in axial position of fluorophores due to swelling with subnanometer accuracy. Additionally, immobilization characteristics of single stranded DNA (ssDNA) and double stranded DNA (dsDNA) probes, as well as hybridization of ssDNA with target strands have been studied. The results show that ssDNA further away from the surface is hybridized more efficiently, which strengthens the earlier analysis of this polymeric coating as a simple but highly efficient and robust DNA microarray surface chemistry.


Asunto(s)
ADN/química , Análisis de Secuencia por Matrices de Oligonucleótidos , Polímeros/química , ADN de Cadena Simple/química , Conformación Molecular , Hibridación de Ácido Nucleico
9.
Appl Opt ; 47(9): 1223-34, 2008 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-18709068

RESUMEN

A hyperspectral Fourier transform spectrometer has been developed for studying biological material bound to optically reflecting surfaces. This instrument has two modes of operation: a white-light reflection mode and a spectral self-interference fluorescence mode. With the combined capability, information about the conformation of an ensemble of biomolecules may be determined. To the best of our knowledge, ours is the first report of this hybrid white-light reflection, spectral self-interference fluorescence measurement with any type of hyperspectral imager. The measurement technique is presented along with a full description of the system, including theoretical performance projections. Proof-of-principle measurements of artificial samples are shown, and the results are discussed.


Asunto(s)
Microscopía Fluorescente/métodos , Microscopía de Interferencia/métodos , Algoritmos , Fenómenos Biofísicos , Biofisica , Interpretación Estadística de Datos , Diseño de Equipo , Análisis de Fourier , Luz , Microscopía Fluorescente/instrumentación , Microscopía de Interferencia/instrumentación , Modelos Estadísticos , Óptica y Fotónica , Fotograbar/instrumentación , Radiometría/métodos , Procesamiento de Señales Asistido por Computador , Espectrofotometría/métodos
10.
Proc Natl Acad Sci U S A ; 105(23): 7988-92, 2008 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-18523019

RESUMEN

Direct monitoring of primary molecular-binding interactions without the need for secondary reactants would markedly simplify and expand applications of high-throughput label-free detection methods. A simple interferometric technique is presented that monitors the optical phase difference resulting from accumulated biomolecular mass. As an example, 50 spots for each of four proteins consisting of BSA, human serum albumin, rabbit IgG, and protein G were dynamically monitored as they captured corresponding antibodies. Dynamic measurements were made at 26 pg/mm(2) SD per spot and with a detectable concentration of 19 ng/ml. The presented method is particularly relevant for protein microarray analysis because it is label-free, simple, sensitive, and easily scales to high-throughput.


Asunto(s)
Análisis por Matrices de Proteínas/métodos , Coloración y Etiquetado/métodos , Animales , Reacciones Antígeno-Anticuerpo , Técnicas Biosensibles , Bovinos , Humanos , Técnicas de Dilución del Indicador , Cinética , Conejos
11.
IEEE J Sel Top Quantum Electron ; 14(1): 131-139, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19823593

RESUMEN

The resonant cavity imaging biosensor (RCIB) is an optical technique for detecting molecular binding interactions label free at many locations in parallel that employs an optical resonant cavity for high sensitivity. Near-infrared light centered at 1512.5 nm couples resonantly through a Fabry-Perot cavity constructed from dielectric reflectors (Si/SiO(2)), one of which serves as the binding surface. As the wavelength is swept using a tunable laser, a near-infrared digital camera monitors cavity transmittance at each pixel. A wavelength shift in the local resonant response of the optical cavity indicates binding. Positioning the sensing surface with respect to the standing wave pattern of the electric field within the cavity controls the sensitivity with which the presence of bound molecules is detected. Transmitted intensity at thousands of pixel locations is recorded simultaneously in a 10 s, 5 nm scan. An initial proof-of-principle setup has been constructed. A test sample was fabricated with 25, 100-mum wide square features, each with a different density of 1-mum square depressions etched 12 nm into the SiO(2) surface. The average depth of each etched region was found with 0.05 nm rms precision. In a second test, avidin, bound selectively to biotin conjugated bovine serum albumin, was detected.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...