Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1415: 527-531, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440082

RESUMEN

Retinopathy is the general name for all condition of the eyes in which blood vessels that supply oxygen to the retina are damaged. These include diabetic retinopathy, retinopathy of prematurity, hypertensive retinopathy, and arteriosclerotic retinopathy. Although the initial trigger that leads to insufficient perfusion of the retina may be different, once a critical level of ischemia is achieved, all types of retinopathies seem to follow a common sequence-oxidative stress, followed by hypoxia-induced formation of morphologically abnormal vessels. This preretinal vascular growth is the most severe aspect of the retinopathy, as the outcome is often retinal detachment and eventually blindness. Regardless of which therapy strategy is followed, a deeper understanding of both normal retinal growth and the underlying molecular mechanisms of retinopathies is needed in order to come up with more effective therapies. This chapter focuses on the citric acid cycle intermediate succinate and its G protein-coupled receptor SUCNR1 in ischemic retinopathies, which were identified as potent mediators of vessel growth in the settings of both normal retinal development and proliferative ischemic retinopathies.


Asunto(s)
Enfermedades de la Retina , Epitelio Pigmentado de la Retina , Recién Nacido , Humanos , Ácido Succínico , Retina , Isquemia , Vasos Retinianos
2.
Biology (Basel) ; 12(2)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36829467

RESUMEN

HN1 has previously been shown as overexpressed in various cancers. In Prostate cancer, it regulates AR signaling and centrosome-related functions. Previously, in two different studies, HN1 expression has been observed as inversely correlated with Cyclin B1. However, HN1 interacting partners and the role of HN1 interactions in cell cycle pathways have not been completely elucidated. Therefore, we used Prostate cancer cell lines again and utilized both transient and stable inducible overexpression systems to delineate the role of HN1 in the cell cycle. HN1 characterization was performed using treatments of kinase inhibitors, western blotting, flow cytometry, immunofluorescence, cellular fractionation, and immunoprecipitation approaches. Our findings suggest that HN1 overexpression before mitosis (post-G2), using both transient and stable expression systems, leads to S-phase accumulation and causes early mitotic exit after post-G2 overexpression. Mechanistically, HN1 interacted with Cyclin B1 and increased its degradation via ubiquitination through stabilized Cdh1, which is a co-factor of the APC/C complex. Stably HN1-expressing cells exhibited a reduced Cdt1 loading onto chromatin, demonstrating an exit from a G1 to S phenotype. We found HN1 and Cdh1 interaction as a new regulator of the Cyclin B1/CDK1 axis in mitotic regulation which can be explored further to dissect the roles of HN1 in the cell cycle.

3.
Elife ; 112022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35576146

RESUMEN

Recent discoveries of extreme cellular diversity in the brain warrant rapid development of technologies to access specific cell populations within heterogeneous tissue. Available approaches for engineering-targeted technologies for new neuron subtypes are low yield, involving intensive transgenic strain or virus screening. Here, we present Specific Nuclear-Anchored Independent Labeling (SNAIL), an improved virus-based strategy for cell labeling and nuclear isolation from heterogeneous tissue. SNAIL works by leveraging machine learning and other computational approaches to identify DNA sequence features that confer cell type-specific gene activation and then make a probe that drives an affinity purification-compatible reporter gene. As a proof of concept, we designed and validated two novel SNAIL probes that target parvalbumin-expressing (PV+) neurons. Nuclear isolation using SNAIL in wild-type mice is sufficient to capture characteristic open chromatin features of PV+ neurons in the cortex, striatum, and external globus pallidus. The SNAIL framework also has high utility for multispecies cell probe engineering; expression from a mouse PV+ SNAIL enhancer sequence was enriched in PV+ neurons of the macaque cortex. Expansion of this technology has broad applications in cell type-specific observation, manipulation, and therapeutics across species and disease models.


Asunto(s)
Elementos de Facilitación Genéticos , Aprendizaje Automático , Neuronas , Análisis de Secuencia de ADN , Animales , Corteza Cerebral/metabolismo , Biología Computacional/métodos , Elementos de Facilitación Genéticos/genética , Globo Pálido , Ratones , Neuronas/metabolismo , Parvalbúminas/metabolismo , Análisis de Secuencia de ADN/métodos
4.
Curr Biol ; 31(24): 5473-5486.e6, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34727523

RESUMEN

Medium spiny neurons (MSNs) constitute the vast majority of striatal neurons and the principal interface between dopamine reward signals and functionally diverse cortico-basal ganglia circuits. Information processing in these circuits is dependent on distinct MSN types: cell types that are traditionally defined according to their projection targets or dopamine receptor expression. Single-cell transcriptional studies have revealed greater MSN heterogeneity than predicted by traditional circuit models, but the transcriptional landscape in the primate striatum remains unknown. Here, we set out to establish molecular definitions for MSN subtypes in Rhesus monkeys and to explore the relationships between transcriptionally defined subtypes and anatomical subdivisions of the striatum. Our results suggest at least nine MSN subtypes, including dorsal striatum subtypes associated with striosome and matrix compartments, ventral striatum subtypes associated with the nucleus accumbens shell and olfactory tubercle, and an MSN-like cell type restricted to µ-opioid receptor rich islands in the ventral striatum. Although each subtype was demarcated by discontinuities in gene expression, continuous variation within subtypes defined gradients corresponding to anatomical locations and, potentially, functional specializations. These results lay the foundation for achieving cell-type-specific transgenesis in the primate striatum and provide a blueprint for investigating circuit-specific information processing.


Asunto(s)
Cuerpo Estriado , Neuronas , Animales , Cuerpo Estriado/fisiología , Dopamina/metabolismo , Ratones , Ratones Endogámicos C57BL , Neostriado , Neuronas/fisiología , Primates
5.
Cell Cycle ; 20(17): 1723-1744, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34382911

RESUMEN

Prostate cancer is one of the most common cancer for men worldwide with advanced forms showing supernumerary or clustered centrosomes. Hematological and neurological expressed 1 (HN1) also known as Jupiter Microtubule Associated Homolog 1 (JPT1) belongs to a small poorly understood family of genes that are evolutionarily conserved across vertebrate species. The co-expression network of HN1 from the TCGA PRAD dataset indicates the putative role of HN1 in centrosome-related processes in the context of prostate cancer. HN1 expression is low in normal RWPE-1 cells as compared to cancerous androgen-responsive LNCaP and androgen insensitive PC-3 cells. HN1 overexpression resulted in differential response for cell proliferation and cell cycle changes in RWPE-1, LNCaP, and PC-3 cells. Since HN1 overexpression increased the proliferation rate in PC-3 cells, these cells were used for functional characterization of HN1 in advanced prostate carcinogenesis. Furthermore, alterations in HN expression led to an increase in abnormal to normal nuclei ratio and increased chromosomal aberrations in PC-3 cells. We observed the co-localization of HN1 with γ-tubulin foci in prostate cancer cells, further validated by immunoprecipitation. HN1 was observed as physically associated with γ-tubulin and its depletion led to increased γ-tubulin foci and disruption in microtubule spindle assembly. Higher HN1 expression was correlated with prostate cancer as compared to normal tissues. The restoration of HN1 expression after silencing suggested that it has a role in centrosome clustering, implicating a potential role of HN1 in cell division as well as in prostate carcinogenesis warranting further studies.


Asunto(s)
Centrosoma , Neoplasias de la Próstata , Tubulina (Proteína) , Proteínas de Ciclo Celular , Centrosoma/metabolismo , Humanos , Masculino , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Tubulina (Proteína)/metabolismo
6.
World J Stem Cells ; 13(6): 485-502, 2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34249224

RESUMEN

Targeted genome editing is a continually evolving technology employing programmable nucleases to specifically change, insert, or remove a genomic sequence of interest. These advanced molecular tools include meganucleases, zinc finger nucleases, transcription activator-like effector nucleases and RNA-guided engineered nucleases (RGENs), which create double-strand breaks at specific target sites in the genome, and repair DNA either by homologous recombination in the presence of donor DNA or via the error-prone non-homologous end-joining mechanism. A recently discovered group of RGENs known as CRISPR/Cas9 gene-editing systems allowed precise genome manipulation revealing a causal association between disease genotype and phenotype, without the need for the reengineering of the specific enzyme when targeting different sequences. CRISPR/Cas9 has been successfully employed as an ex vivo gene-editing tool in embryonic stem cells and patient-derived stem cells to understand pancreatic beta-cell development and function. RNA-guided nucleases also open the way for the generation of novel animal models for diabetes and allow testing the efficiency of various therapeutic approaches in diabetes, as summarized and exemplified in this manuscript.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...