Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38843466

RESUMEN

Low-valent main group species have been evolving as powerful alternatives to transition metals over the years due to their advantages such as low toxicity and high abundance. However, the inability of main group elements to mimic the redox-switching property of transition metals often limits their role as catalysts. Here, we demonstrate the use of a low-valent phosphorus(I) compound as an efficient metal-free catalyst for the synthesis of biologically relevant γ-butyrolactones through dual activation under ambient reaction conditions. The highly nucleophilic phosphorus(I) center plays a key role in leading to this transformation. Extensive experimental and theoretical studies suggest that the phosphorus center exhibits facile switching between its reduced state [P(I)] and its oxidized state [P(III)] during this transformation, mimicking the behavior of transition metals.

2.
Chem Sci ; 14(19): 5079-5086, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37206403

RESUMEN

Herein, we report the first catalytic methylation of primary amides using CO2 as a C1 source. A bicyclic (alkyl)(amino)carbene (BICAAC) exhibits dual role by activating both primary amide and CO2 to carry out this catalytic transformation which enables the formation of a new C-N bond in the presence of pinacolborane. This protocol was applicable to a wide range of substrate scopes, including aromatic, heteroaromatic, and aliphatic amides. We successfully used this procedure in the diversification of drug and bioactive molecules. Moreover, this method was explored for isotope labelling using 13CO2 for a few biologically important molecules. A detailed study of the mechanism was carried out with the help of spectroscopic studies and DFT calculations.

3.
Chem Commun (Camb) ; 58(68): 9540-9543, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35929415

RESUMEN

Herein we report the first metal-free regioselective Markovnikov ring-opening of epoxides (selectivity up to 99%) using an abnormal N-heterocyclic carbene (aNHC) to yield secondary alcohols. DFT calculations and X-ray crystallography suggest that the Markovnikov selectivity originates from the high nucleophilicity and steric factors associated with the aNHC.

4.
J Pharm Sci ; 110(3): 1365-1373, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33340534

RESUMEN

Boron neutron capture therapy (BNCT) remains an important treatment arm for cancer patients with locally invasive malignant tumors. This therapy needs a significant amount of boron to deposit in cancer tissues selectively, sparing other healthy organs. Most of the liposomes contain water-soluble polyhedral boron salts stay in the core of the liposomes and have low encapsulation efficiency. Thus, modifying the polyhedral boron core to make it hydrophobic and incorporating those into the lipid layer could be one of the ways to increase drug loading and encapsulation efficiency. Additionally, a systematic study about the linker-dependent effect on drug encapsulation and drug-release is lacking, particularly for the liposomal formulation of hydrophobic-drugs. To achieve these goals, liposomal formulations of a series of lipid functionalized cobalt bis(dicarbollide) compounds have been prepared, with the linkers of different hydrophobicity. Hydrophobicity of the linkers have been evaluated through logP calculation and its effect on drug encapsulation and release have been investigated. The liposomes have shown high drug loading, excellent encapsulation efficiency, stability, and non-toxic behavior. Release experiment showed minimal release of drug from liposomes in phosphate buffer, ensuring some amount of drug, associated with liposomes, can be available to tumor tissues for Boron Neutron Capture Therapy.


Asunto(s)
Terapia por Captura de Neutrón de Boro , Liposomas , Boro , Colesterol , Cobalto , Humanos
5.
Chem Sci ; 11(39): 10571-10593, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34094313

RESUMEN

Over exploitation of natural resources and human activities are relentlessly fueling the emission of CO2 in the atmosphere. Accordingly, continuous efforts are required to find solutions to address the issue of excessive CO2 emission and its potential effects on climate change. It is imperative that the world looks towards a portfolio of carbon mitigation solutions, rather than a single strategy. In this regard, the use of CO2 as a C1 source is an attractive strategy as CO2 has the potential to be a great asset for the industrial sector and consumers across the globe. In particular, the reduction of CO2 offers an alternative to fossil fuels for various organic industrial feedstocks and fuels. Consequently, efficient and scalable approaches for the reduction of CO2 to products such as methane and methanol can generate value from its emissions. Accordingly, in recent years, metal-free catalysis has emerged as a sustainable approach because of the mild reaction conditions by which CO2 can be reduced to various value-added products. The metal-free catalytic reduction of CO2 offers the development of chemical processes with low cost, earth-abundant, non-toxic reagents, and low carbon-footprint. Thus, this perspective aims to present the developments in both the reduction and reductive functionalization chemistry of CO2 during the last decade using various metal-free catalysts.

6.
Chem Sci ; 11(7): 1848-1854, 2019 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-34123278

RESUMEN

An abnormal N-heterocyclic carbene (aNHC) based potassium complex was used as a transition metal-free catalyst for reduction of primary amides to corresponding primary amines under ambient conditions. Only 2 mol% loading of the catalyst exhibits a broad substrate scope including aromatic, aliphatic and heterocyclic primary amides with excellent functional group tolerance. This method was applicable for reduction of chiral amides and utilized for the synthesis of pharmaceutically valuable precursors on a gram scale. During mechanistic investigation, several intermediates were isolated and characterized through spectroscopic techniques and one of the catalytic intermediates was characterized through single-crystal XRD. A well-defined catalyst and isolable intermediate along with several stoichiometric experiments, in situ NMR experiments and the DFT study helped us to sketch the mechanistic pathway for this reduction process unravelling the dual role of the catalyst involving nucleophilic activation by aNHC along with Lewis acidic activation by K ions.

7.
J Org Chem ; 83(16): 9403-9411, 2018 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-30015486

RESUMEN

This work describes the dehydrogenative coupling of heteroarenes using a dimeric halo-bridged palladium(II) catalyst bearing an abnormal NHC ( aNHC) backbone. The catalyst can successfully activate the C-H bond of a wide range of heteroarenes, which include benzothiazole, benzoxazole, thiophene, furan, and N-methylbenzimidazole. Further, it exhibited good activity for heteroarenes bearing various functional groups such as CN, CHO, Me, OMe, OAc, and Cl. Additionally, we isolated the active catalyst by performing stoichiometric reaction and characterized it as the acetato-bridged dimer of ( aNHC)PdOAc by single-crystal X-ray study.

8.
J Am Chem Soc ; 140(26): 8330-8339, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29883115

RESUMEN

In recent years, merging different types of catalysis in a single pot has drawn considerable attention and these catalytic processes have mainly relied upon metals. However, development of a completely metal free approach integrating organic redox and organic Lewis acidic property into a single system has been missing in the current literature. This study establishes that a redox active phenalenyl cation can activate one of the substrates by single electron transfer process while the same can activate the other substrate by a donor-acceptor type interaction using its Lewis acidity. This approach has successfully achieved light and metal-free catalytic C-H functionalization of unactivated arenes at ambient temperature (39 entries, including core moiety of a top-selling molecule boscalid), an economically attractive alternative to the rare metal-based multicatalysts process. A tandem approach involving trapping of reaction intermediates, spectroscopy along with density functional theory calculations unravels the dual role of phenalenyl cation.

9.
Chem Sci ; 8(11): 7798-7806, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29163916

RESUMEN

The radical-mediated transition metal-free approach for the direct C-H bond functionalization of arenes is considered as a cost effective alternative to transition metal-based catalysis. An organic ligand-based radical plays a key role by generating an aryl radical which undergoes a subsequent functionalization process. The design principle of the present study takes advantage of a relatively stable odd alternant hydrocarbon-based phenalenyl (PLY) radical. In this study, the first transition metal-free catalyzed direct C-H arylation of a variety of heteroarenes such as azoles, furan, thiophene and pyridine at room temperature has been reported using a phenalenyl-based radical without employing any photoactivation step. This protocol has been successfully applied to the gram scale synthesis of core moieties of bioactive molecules. The phenalenyl-based radical initiator has been characterized crystallographically by trapping it via the formation of a C-C σ-bond between the phenalenyl radical and solvent-based radical species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA