Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Biomater ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38750917

RESUMEN

Skin denervation has been shown to cause remission of psoriatic lesions in patients, which can reappear if reinnervation occurs. This effect can be induced by the activation of dendritic cells through sensory innervation. However, a direct effect of nerves on the proliferation of keratinocytes involved in the formation of psoriatic plaques has not been investigated. We developed, by tissue engineering, a model of psoriatic skin made of patient skin cells that showed increased keratinocyte proliferation and epidermal thickness compared to healthy controls. When this model was treated with CGRP, a neuropeptide released by sensory neurons, an increased keratinocyte proliferation was observed in the psoriatic skin model, but not in the control. When a sensory nerve network was incorporated in the psoriatic model and treated with capsaicin to induce neuropeptide release, an increase of keratinocyte proliferation was confirmed, which was blocked by a CGRP antagonist while no difference was noticed in the innervated healthy control. We showed that sensory neurons can participate directly to keratinocyte hyperproliferation in the formation of psoriatic lesions through the release of CGRP, independently of the immune system. Our unique tissue-engineered innervated psoriatic skin model could be a valuable tool to better understand the mechanism by which nerves may modulate psoriatic lesion formation in humans. STATEMENT OF SIGNIFICANCE: This study shows that keratinocytes extracted from patients' psoriatic skin retain, at least in part, the disease phenotype. Indeed, when combined in a 3D model of tissue-engineered psoriatic skin, keratinocytes exhibited a higher proliferation rate, and produced a thicker epidermis than a healthy skin control. In addition, their hyperproliferation was aggravated by a treatment with CGRP, a neuropeptide released by sensory nerves. In a innervated model of tissue-engineered psoriatic skin, an increase in keratinocyte hyperproliferation was also observed after inducing neurons to release neuropeptides. This effect was prevented by concomitant treatment with an antagonist to CGRP. Thus, this study shows that sensory nerves can directly participate to affect keratinocyte hyperproliferation in psoriasis through CGRP release.

2.
Tissue Eng Part C Methods ; 29(4): 134-143, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36792923

RESUMEN

In the peripheral nervous system, Schwann cells (SCs) play a crucial role in axonal growth, metabolic support of neurons, and the production of myelin sheaths. Expansion of SCs after extraction from human or animal nerves is a long and often low-yielding process. We established a rapid cell culture method using a defined serum-free medium to differentiate human induced pluripotent stem cells (iPSCs) into SCs in only 21 days. The SC identity was characterized by expression of SRY-Box Transcription factor 10 (SOX10), S100b, glial fibrillary acidic protein (GFAP), P75, growth-associated protein 43 (GAP43), and early growth response 2 (EGR2) markers. The SC purity reached 87% as assessed by flow cytometry using the specific SOX10 marker, and 69% based on S100b expression. When SCs were cocultured with iPSC-derived motor neurons two-dimensionally or three-dimensionally (3D), they also expressed the markers of myelin MBP, MPZ, and gliomedin. Likewise, when they were seeded on the opposite side of a porous collagen sponge from motor neurons in the 3D model, they were able to migrate through it and colocalize with motor axons after 8 weeks of maturation. Moreover, they were shown by transmission electron microscopy to form myelin sheaths around motor axons. These results suggest that the use of autologous iPSC-derived SCs for clinical applications such as the repair of peripheral nerve damage, the treatment of spinal cord injuries, or for demyelinating diseases could be a valuable option. Impact Statement Peripheral nerve injuries can cause the complete paralysis of the upper or lower limbs, which considerably reduces the quality of life of patients. To repair this injury, many approaches have been developed by tissue engineering. Combining biomaterials with Schwann cells (SCs) has been shown to be an effective solution for stimulating nerve regeneration. However, the challenge faced concerns the strategy for obtaining autologous SCs to treat patients. A promising approach is to differentiate them from the patient's own cells, previously induced into pluripotent stem cells. We propose a fast culture method to generate functional SCs differentiated from induced pluripotent stem cells.


Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Humanos , Calidad de Vida , Células de Schwann , Vaina de Mielina/metabolismo , Diferenciación Celular , Regeneración Nerviosa/fisiología , Células Cultivadas
3.
Stroke ; 53(4): 1263-1275, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34991336

RESUMEN

BACKGROUND: Variants in the ring finger protein 213 (RNF213) gene are known to be associated with increased predisposition to cerebrovascular diseases development. Genomic studies have identified RNF213 as a major risk factor of Moyamoya disease in East Asian descendants. However, little is known about the RNF213 (ring finger protein 213) biological functions or its associated pathogenic mechanisms underlying Moyamoya disease. METHODS: To investigate RNF213 loss-of-function effect in endothelial cell, stable RNF213-deficient human cerebral endothelial cells were generated using the CRISPR-Cas9 genome editing technology. RESULTS: In vitro assays, using RNF213 knockout brain endothelial cells, showed clear morphological changes and increased blood-brain barrier permeability. Downregulation and delocalization of essential interendothelial junction proteins involved in the blood-brain barrier maintenance, such as PECAM-1 (platelet endothelial cell adhesion molecule-1), was also observed. Brain endothelial RNF213-deficient cells also showed an abnormal potential to transmigration of leukocytes and secreted high amounts of proinflammatory cytokines. CONCLUSIONS: Taken together, these results indicate that RNF213 could be a key regulator of cerebral endothelium integrity, whose disruption could be an early pathological mechanism leading to Moyamoya disease. This study also further reinforces the importance of blood-brain barrier integrity in the development of Moyamoya disease and other RNF213-associated diseases.


Asunto(s)
Adenosina Trifosfatasas , Enfermedad de Moyamoya , Ubiquitina-Proteína Ligasas , Adenosina Trifosfatasas/genética , Células Endoteliales/metabolismo , Endotelio , Predisposición Genética a la Enfermedad , Humanos , Enfermedad de Moyamoya/patología , Factores de Transcripción , Ubiquitina-Proteína Ligasas/genética
4.
Front Pharmacol ; 4: 122, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24068998

RESUMEN

The C-C chemokine receptor-7 (CCR7) is a G protein coupled receptor that has a role in leukocyte homing, but that is also expressed in aggressive tumor cells. Preclinical research supports that CCR7 is a valid target in oncology. In view of the increasing availability of therapeutic monoclonal antibodies that carry cytotoxic cargoes, we studied the feasibility of forcing intact cells to internalize known monoclonal antibodies by exploiting the cycle of endocytosis and recycling triggered by the CCR7 agonist CCL19. Firstly, an anti-CCR7 antibody (CD197; clone 150503) labeled surface recombinant CCR7 expressed in intact HEK 293a cells and the fluorescent antibody was internalized following CCL19 treatment. Secondly, a recombinant myc-tagged CCL19 construction was exploited along the anti-myc monoclonal antibody 4A6. The myc-tagged ligand was produced as a conditioned medium of transfected HEK 293a cells that contained the equivalent of 430 ng/ml of immunoreactive CCL19 (average value, ELISA determination). CCL19-myc, but not authentic CCL19, carried the fluorophore-labeled antibody 4A6 into other recipient cells that expressed recombinant CCR7 (microscopy, cytofluorometry). The immune complexes were apparent in endosomal structures, co-localized well with the small GTPase Rab5 and progressed toward Rab7-positive endosomes. A dominant negative form of Rab5 (GDP-locked) inhibited this endocytosis. Further, endosomes in CCL19-myc- or CCL19-stimulated cells were positive for ß-arrestin2, but rarely for ß-arrestin1. Following treatment with CCL19-myc and the 4A6 antibody, the melanoma cell line A375 that expresses endogenous CCR7 was specifically stained using a secondary peroxidase-conjugated antibody. Agonist-stimulated CCR7 can transport antibody-based cargoes, with possible therapeutic applications in oncology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...