Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
3 Biotech ; 13(11): 364, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37840880

RESUMEN

Kinetic assays with a nitrifying consortium with whole nitrifying cells amended with 5 mg 2-CP-C/L and 100, 200, 300, or 500 mg NH4+-N/L were carried out in batch and nitrifying sequencing batch reactor (SBR) cultures. No nitrification activity was observed in batch assays with 100 mg NH4+-N/L and 5 mg 2-CP-C/L. Nevertheless, increasing the ammonium concentration from 200 to 500 mg NH4+-N/L allowed simultaneous ammonium and nitrite oxidation even in the presence of 5 mg 2-CP-C/L plus the halogenated compound consumption. Under these conditions, the ammonium monooxygenase enzyme participated in 2-CP consumption. Complete nitrification and simultaneous elimination of 5 mg 2-CP-C/L were achieved in the SBR amended with 200-500 mg NH4+-N/L. The inhibitory effect of 2-CP on the nitrite oxidation process completely disappeared under these conditions. Assays with nitrifying cell-free extracts, ammonium (100 mg NH4+-N/L), and 2-CP (5 mg 2-CP-C/L) were also conducted. In the absence of 2-CP, the nitrifying cell-free extracts maintained up to 60% of the nitrifying activity compared to whole-cells. Contrary to whole-cell assays, cell-free extracts were capable of simultaneously oxidizing ammonium and consuming 2-CP. However, the inhibitory effect of 2-CP on nitrification was still present as lower specific rates of ammonium consumption and nitrate production were obtained. Thus, these assays indicate that the presence of 2-CP affects both, the ammonium transport mechanism and the activity of nitrifying enzymes. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03764-z.

2.
Water Sci Technol ; 71(2): 277-82, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25633952

RESUMEN

The metabolic and kinetic behavior of a nitrifying sludge exposed to 2-chlorophenol (2-CP) was evaluated in batch cultures. Two kinds of nitrifying culture were used; one acclimated to 4-methylphenol (4-mp), and the other unacclimated to 4-mp. The unacclimated culture was affected adversely by the 2-CP's presence, since neither nitrification nor 2-CP oxidation was observed. Nonetheless, the acclimated culture showed metabolic capacity to nitrify and mineralize 2-CP. Ammonium removal was 100%, with a nitrifying yield of 0.92 ± 0.04 mg NO(3)(-)-N/mg NH(4)(+)-N consumed. The consumption efficiency for 2-CP was 100% and the halogenated compound was mineralized to CO2. Denaturing gradient gel electrophoresis (DGGE) patterns showed the shift in microbial community structure, indicating that microbial diversity was due to the acclimation process. This is the first evidence where nitrifying culture acclimated to 4-mp completely removed ammonium and 2-CP.


Asunto(s)
Bacterias/metabolismo , Clorofenoles/metabolismo , Compuestos de Amonio/metabolismo , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Biodegradación Ambiental , Cinética , Nitrificación , Oxidación-Reducción , Aguas del Alcantarillado/química , Aguas del Alcantarillado/microbiología
3.
Appl Biochem Biotechnol ; 169(3): 990-1000, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23296802

RESUMEN

The effect of 2-chlorophenol (2-CP) on ammonium and nitrite-oxidizing processes was kinetically evaluated in batch cultures with nitrifying sludge at steady state. Assays with ammonium or nitrite as energy source and 2.5, 5.0, or 10.0 mg 2-CP-C/l were conducted. Control assays without 2-CP were also performed. Ammonium-oxidizing activity was completely inhibited at the different 2-CP concentrations, whereas nitrite-oxidizing activity was present as nitrite was completely consumed and converted to nitrate irrespectively of 2-CP concentration. In the presence of 2.5 and 5.0 mg 2-CP-C/l, no significant effect on specific rates of nitrite consumption and nitrate production was observed, but a significant decrease on these parameters was observed at 10.0 mg 2-CP-C/l. The nitrifying sludge previously exposed to 2-CP was unable to completely recover its ammonium and nitrite oxidation capacity. Nevertheless, complete 2-CP consumption was achieved in all assays. The effect of 2-CP on ammonium oxidation was observed at kinetic and metabolic pathway level, whereas the effect on nitrite oxidation was observed only at kinetic level. The results obtained in this work evidenced that in order to achieve a successful nitrification process the presence in wastewater of even 2.5 mg 2-CP-C/l should be avoided.


Asunto(s)
Clorofenoles/farmacología , Nitritos/química , Compuestos de Amonio Cuaternario/química , Cinética , Oxidación-Reducción/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...