Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 9(12)2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271915

RESUMEN

Cold atmospheric plasma (CAP) is a novel non-thermal technology with potential applications in inactivating microorganisms in food products. However, its impact on food quality is not yet fully understood. The aim of this research is to study the impact of in-package plasma technology on the stability of cholesterol and total lipid in four different types of meat (beef, pork, lamb and chicken breast). Additionally, any changes in the primary or secondary lipid oxidation, which is undesirable from a health perspective, is investigated. CAP was not found to have any impact on the cholesterol or lipid content. However, higher peroxide and thiobarbituric acid reactive substances (TBARS) values were found for the treated samples, indicating that plasma can induce the acceleration of primary and secondary lipid oxidation. Finally, color was not affected by the treatment supporting the suitability of the technology for meat products.

2.
J Agric Food Chem ; 66(20): 5041-5054, 2018 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-29672043

RESUMEN

A range of nonthermal techniques have demonstrated process efficacy in ensuring product safety, extension of shelf life, and in general a retention of key quality attributes. However, various physical, chemical and biochemical effects of nonthermal techniques on macro and micro nutrients are evident, leading to both desirable and undesirable changes in food products. The objective of this review is to outline the effects of nonthermal techniques on food chemistry and the associated degradation mechanisms with the treatment of foods. Oxidation is one of the key mechanisms responsible for undesirable effects induced by nonthermal techniques. Degradation of key macromolecules largely depends on the processing conditions employed. Various extrinsic and intrinsic control parameters of high-pressure processing, pulsed electric field, ultrasound processing, and cold atmospheric plasma on chemistry of processed food are outlined. Proposed mechanisms and associated degradation of macromolecules, i.e., proteins, lipids, and bioactive molecules resulting in food quality changes are also discussed.


Asunto(s)
Manipulación de Alimentos/métodos , Lípidos/química , Proteínas/química , Manipulación de Alimentos/instrumentación , Calidad de los Alimentos , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...