Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 12(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37685194

RESUMEN

The high rate of deaths around the world from noncommunicable diseases (NCDs) (70%) is a consequence of a poor diet lacking in nutrients and is linked to lifestyle and environmental conditions that together trigger predisposing factors. NCDs have increased 9.8% of public health spending worldwide, which has been increasing since 2000. Hence, international organizations such as the WHO, the Pan American Health Organization, and the Food and Agriculture Organization of the United Nations have been developing strategic plans to implement government and economic policies to strengthen programs in favor of food security and nutrition. A systematic review is presented to document an analysis of the origin and characteristics of obesity, cardiovascular disease, chronic respiratory diseases, diabetes, and cancers affecting a large part of the world's population. This review proposes a scientifically based report of functional foods including fruits, vegetables, grains, and plants, and how their bioactive compounds called nutraceuticals-when consumed as part of a diet-benefit in the prevention and treatment of NCDs from an early age. Multifactorial aspects of NCDs, such as culture and eating habits, are limitations to consider from the clinical, nutritional, and biochemical points of view of everyone who suffers from them.

2.
Crit Rev Food Sci Nutr ; : 1-19, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37498206

RESUMEN

Cicer arietinum or chickpea is an important and highly nutritious pulse, a source of complex carbohydrates, proteins, vitamins, and minerals, considered non-allergenic, and non-GMO crop. Processing technologies play an important role in modifying some chickpea properties and thus increasing its nutritional and health benefits. Herein is summarized and compared the available data on nutritional and functional aspects caused by thermal, nonthermal, and combinations of treatments for chickpea processing. The study focuses on describing the processing conditions necessary to change chickpea matrices aiming to enhance compound bioavailability, reduce anti-nutritional factors and modify functional characteristics for industrial application in product development. Thermal and nonthermal treatments can modify nutrient composition and bioavailability in chickpea matrices. Thermal treatments, moist or dry, prevent microbial spoilage, increase product palatability and increase protein quality. Nonthermal treatments aim to shorten the processing time and use less energy and water sources. Compared to thermal treatments, they usually preserve organoleptic attributes and bioactive compounds in chickpea matrices. Some treatment combinations can increase the efficacy of single treatments. Combined treatments increase antioxidant concentration, protein digestibility and available starch contents. Finally, despite differences among their effects, single and combined treatments can improve the nutritional and physicochemical properties of chickpea matrices.

3.
Foods ; 12(10)2023 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-37238806

RESUMEN

This research aimed to characterize the physicochemical, in vitro digestion, and structural features of digestion residues of maize and sorghum starches subjected to thermoplastic extrusion, along with the influence of Sodium Stearoyl Lactylate (SSL), to obtain improved starches for food applications and to understand their behavior when consumed as a food ingredient. The morphology of the extruded materials showed remanent starch granules when SSL was used. A higher amount of medium and large linear glucan chains were found in these particles, influencing higher thermal stability (ΔH ≈ 4 J/g) and a residual crystallinity arrangement varying from 7 to 17% in the extrudates. Such structural features were correlated with their digestibility, where slowly digestible starch (SDS) and resistant starch (RS) fractions ranged widely (from 18.28 to 27.88% and from 0.13 to 21.41%, respectively). By analyzing the data with a Principal component analysis (PCA), we found strong influences of B2 and B3 type chains on the thermal stability of the extrudates. The amylose and smaller glucan chains (A and B1) also significantly affected the emulsifying and foam stability properties. This research contributes to the molecular knowledge of starch in extruded products with broad food applications.

4.
Front Nutr ; 9: 1023653, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466424

RESUMEN

Background: Cognition and brain function is critical through childhood and should be improved with balanced diets. Incorporating bioactive ingredients such as omega-3 polyunsaturated fatty acids (ω3 PUFAs) and probiotics into food formulations could be used as an approach to improve cognitive function. This study evaluated the effects on cognitive capacity of complementing rodent diets with chocolate, by itself and in combination with ω3 PUFAs from fish oil and probiotics. Methods: Spatial learning and memory in the rats were determined by the Barnes maze test in short- and long-term memory. Samples from the cecum were obtained to assess microbial counts (Lactobacillus, Bifidobacterium, Enterobacteriaceae, and total bacteria), and brains were recovered to analyze the neural morphology of the tissues. Also, glucose, brain weights, and epididymal tissue were analyzed. Results: The combination of chocolate with fish oil and probiotics improved the memory of rats compared to the result of each bioactive compound when evaluated separately. Treatments did not affect sugar level, epididymal adipose tissue, or brain weight. On the other hand, consuming probiotics alone or in combination with chocolate decreased Enterobacteria counts, while Lactobacillus and Bifidobacteria counts were not affected. Neural morphological analysis showed that combining chocolate with probiotics and ω3 PUFAs increased the number of neurons in the hippocampal CA1 and CA3 regions. Conclusion: Chocolate added with probiotics and ω3 PUFAs improved spatial memory and learning in the studied model.

5.
Insects ; 13(6)2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35735847

RESUMEN

In recent times, insects have gained attention because of their nutritional characteristics as well as the environmental advantages of their production. In this research, the effect of the diet of grasshoppers (Sphenarium purpurascens) under controlled conditions on their chemical and nutritional content was studied. The insects were divided into two groups: maize leaf-fed grasshoppers (MFG) and soy sprout-fed grasshoppers (SFG). To evaluate the changes in composition, chemical analysis (protein, fiber, fat, ashes, and chitin) was carried out in triplicate according to AOAC procedures, and a Student's t-test was used to determine any significant differences. The results showed a higher content of crude protein, in vitro protein digestibility percentage, and sum of non-essential amino acids (NEAAs) in the MFG samples compared with the SFG samples. The total dietary fiber, insoluble dietary fiber, soluble dietary fiber, sum of the EAA, non-essential amino acid percentage (EAA%), and biological value percentage (BV%) were higher in the SFG than the MFG, while in the amino acid profile and chitin content, no significant differences were obtained, although an increase in oleic acid in the SFG was observed. In FTIR, a ß-sheet appeared in the SFG, which could be related to the low in vitro protein digestibility. The use of a soy sprout diet caused changes in the chemical composition and nutritional content of grasshoppers. This represents an opportunity to improve their nutritional value for commercial interests.

6.
Plant Foods Hum Nutr ; 77(2): 226-232, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35501586

RESUMEN

Corn kernels were soaked with different selenium (Se) solutions (0, 12 or 24 mg Na2SeO3/L), sprouted for different times and then lime-cooked for the pilot plant production of tortillas. The dough and tortillas were quantified in terms of total Se, starch and protein content. Also, in vitro digestibility, texture, color, and sensory properties were evaluated. Results indicated that lime-cooking times were significantly reduced from 39.15 to 14.34, 8.42 and 2.80 min when whole corn was compared with kernels germinated for 1, 2 or 3 days. The Se content of regular tortillas (0.08 µg/g dw) increased about eight-fold in tortillas (0.651-0.625 µg/g dw) produced of corn germinated for two day and treated with 24 mg of Na2SeO3/L. The highest α-amylase activity and lower starch viscosity values were observed in 3-day germinated supplemented with the highest Se. Se-enriched tortillas produced from 2-day sprouted kernels treated with 12 mg Na2SeO3 showed the highest levels of general acceptability, texture and flavor.


Asunto(s)
Selenio , Zea mays , Pan/análisis , Culinaria/métodos , Manipulación de Alimentos/métodos , Almidón
7.
J Food Sci Technol ; 59(4): 1384-1395, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35250063

RESUMEN

The growing need for developing more efficient and sustainable technologies for the processing of bakery products leads to the need for replacing the current subjective methodology by an instrumental method to evaluate the quality of these products. In this work, relevant physic characteristics that define the quality and acceptability of pizzas were identified, and instrumental methods were established to evaluate them. Cooking quality of the pizza base was established through rapid visco analysis and scanning electron microscopy. The physic attributes considered of the pizza base with and without toppings were final cooking temperature, specific volume, water content, color, and texture. Aiming to validate the applicability of the instrumental methods, we prepared well-accepted pizzas, using three different oven technologies, and carried out a sensory test with 60 non-trained panelists. We observed that the proposed method is sensitive enough to identify differences in the quality of pizzas produced by the oven technologies. However, those variations were not enough to be recognized by participants of the sensory panel. The values of pizza attributes obtained in this work could be used as a baseline of comparison for pizzas produced by new and more efficient cooking technologies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1007/s13197-021-05148-8).

8.
ACS Appl Mater Interfaces ; 13(31): 37455-37465, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34339168

RESUMEN

Multi-material and multilayered micro- and nanostructures are prominently featured in nature and engineering and are recognized by their remarkable properties. Unfortunately, the fabrication of micro- and nanostructured materials through conventional processes is challenging and costly. Herein, we introduce a high-throughput, continuous, and versatile strategy for the fabrication of polymer fibers with complex multilayered nanostructures. Chaotic electrospinning (ChE) is based on the coupling of continuous chaotic printing (CCP) and electrospinning, which produces fibers with an internal multi-material microstructure. When a CCP printhead is used as an electrospinning nozzle, the diameter of the fibers is further scaled down by 3 orders of magnitude while preserving their internal structure. ChE enables the use of various polymer inks for the creation of nanofibers with a customizable number of internal nanolayers. Our results showcase the versatility and tunability of ChE to fabricate multilayered structures at the nanoscale at high throughput. We apply ChE to the synthesis of unique carbon textile electrodes composed of nanofibers with striations carved into their surface at regular intervals. These striated carbon electrodes with high surface areas exhibit 3- to 4-fold increases in specific capacitance compared to regular carbon nanofibers; ChE holds great promise for the cost-effective fabrication of electrodes for supercapacitors and other applications.

9.
Foods ; 10(8)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34441642

RESUMEN

Chocolate is an adequate matrix to deliver bioactive ingredients. However, it contains high sugar levels, one of the leading causes of chronic degenerative diseases. This work aimed to evaluate the effects of milk chocolate reformulation with alternative sugar sweeteners (Sw; isomalt + stevia), probiotics (Prob), and ω-3 polyunsaturated fatty acids (PUFAs) on its physicochemical properties and consumers' acceptability. Lactobacillus plantarum 299v (L. p299v) and Lactobacillus acidophilus La3 (DSMZ 17742) were added as Prob strains, and fish oil (FO) was added as the source of ω-3 PUFAs. Prob addition resulted in chocolates with >2 × 107 colony forming unit (CFU) per serving size (12 g). Except for Prob, aw values of all treatments were <0.46. Sw and Sw + Prob presented the nearest values to the control in hardness, whereas Sw without FO increased fracturability. FO, Sw + FO, and Sw + Prob + FO contained 107.4 ± 12.84, 142.9 ± 17.9, and 133.78 ± 8.76 mg of ω-3 PUFAs per chocolate, respectively. Prob + FO increased the resistance of chocolate to shear stress, while Sw + FO showed a similar flow behavior to the control. The consumers' acceptability of Sw + Prob chocolate was adequate, while Sw + Prob + FO had higher acceptability than Prob + FO. Health benefits of reformulated milk chocolates requires further assessment by in vitro, in vivo and clinical studies.

10.
ACS Biomater Sci Eng ; 7(8): 3964-3979, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34197076

RESUMEN

The use of three-dimensional (3D) printing for biomedical applications has expanded exponentially in recent years. However, the current portfolio of 3D printable inks is still limited. For instance, only few protein matrices have been explored as printing/bioprinting materials. Here, we introduce the use of zein, the primary constitutive protein in maize seeds, as a 3D printable material. Zein-based inks were prepared by dissolving commercial zein powder in ethanol with or without polyethylene glycol (PEG400) as a plasticizer. The rheological characteristics of our materials, studied during 21 days of aging/maturation, showed an increase in the apparent viscosity as a function of time in all formulations. The addition of PEG400 decreased the apparent viscosity. Inks with and without PEG400 and at different maturation times were tested for printability in a BioX bioprinter. We optimized the 3D printing parameters for each ink formulation in terms of extrusion pressure and linear printing velocity. Higher fidelity structures were obtained with inks that had maturation times of 10 to 14 days. We present different proof-of-concept experiments to demonstrate the versatility of the engineered zein inks for diverse biomedical applications. These include printing of complex and/or free-standing 3D structures, tablets for controlled drug release, and scaffolds for cell culture.


Asunto(s)
Bioimpresión , Zeína , Tinta , Impresión Tridimensional , Zea mays
11.
Foods ; 10(2)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557241

RESUMEN

In this study, a milk chocolate formulation was developed to serve as vehicle of Omega-3 (ω3) polyunsaturated fatty acids (PUFAs) and probiotics (L. plantarum 299v and L. rhamnosus GG). Fish oil (FO) was incorporated in chocolate as a source of ω3 PUFAs. Probiotics (Prob) and FO were added during tempering, obtaining chocolates with 76.0 ± 5.2 mg (FO1) or 195.8 ± 6.5 mg (FO2) of ω3 PUFAs, and >1 × 106 CFU of Prob per chocolate portion (12 g). The physicochemical properties (rheological analysis, texture, surface instrumental color, aw, and fatty acid profile), and sensory acceptability of the formulations were determined. Prob and FO generated a decrease in L* and white index (WI) values. Except for Prob + FO2, all treatments showed a decrease in aw. Rheological parameters of FO1 and Prob + FO1 presented the most similar behavior as compared with the control. Prob or FO1 addition did not affect the overall consumer's acceptability of chocolate; and when both nutraceuticals were combined (Prob + FO1) the product showed adequate overall acceptability. FO2 formulations were not considered adequate to maintain physicochemical properties and sensory acceptability of chocolate. Results indicated that milk chocolate is a suitable vehicle for delivering ω3 PUFAs and Prob, which are essential to enhance cognitive development in children.

12.
Methods Mol Biol ; 2178: 65-79, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33128744

RESUMEN

The increasing interest of the biopharmaceutical industry to exploit plants as a commercially viable production system is demanding the development of new strategies to maximize product recovery. Aqueous two-phase systems (ATPSs) are a primary recovery technique that has shown great potential for the efficient extraction and purification of biological products, from organelles to proteins and low-molecular-weight compounds. The evaluation of different system parameters upon the partitioning behavior can provide the conditions that favor the concentration of contaminants and the desired target protein in opposite phases. The protocols described here provide the basic strategy to explore the use of ATPSs for the isolation and partial purification of native and recombinant proteins from plants and plant-derived extracts.


Asunto(s)
Adenosina Trifosfatasas , Extractos Vegetales/química , Proteínas de Plantas , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/aislamiento & purificación , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación
13.
Food Chem ; 307: 125551, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31648173

RESUMEN

Postharvest wounding stress in carrots induces the accumulation of phenolics, whereas extrusion generates modifications in the nutritional profiles of food matrixes. In the present study, the sequential application of wounding stress and extrusion on total free and bound phenolics as well as on carotenoid profiles of carrots was evaluated. Wounding was applied by shredding carrots and storing the tissue (48 h, 15 °C). The stressed-tissue was dehydrated and extruded at 63 °C or 109 °C and at continuous or expansion screw configurations. Extrudates were milled and sieved before phytochemical analysis. Wounding increased total free (288.1%) and bound (407.6%) phenolic content, whereas the carotenoid content was unaltered. The free and bound phenolics that showed the highest increase due to wounding were the chlorogenic (579.8%) and p-coumaric (390.9%) acids. Extrusion, at 109 °C under expansion screw configuration, further increased the wound-induced accumulation of total free (296.6%) and bound (22.1%) phenolics and induced trans-cis isomerization of ß-carotene.


Asunto(s)
Daucus carota/química , Fenoles/análisis , Carotenoides/análisis , Fitoquímicos/análisis , Estrés Fisiológico
14.
Anticancer Drugs ; 31(3): 251-259, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31764012

RESUMEN

The objective of this study was to analyze the antitumor activity of a hydrogel loaded with lipophilic bismuth nanoparticles on human cervical, prostate, and colon cancer cell lines. The effect of lipophilic bismuth nanoparticles on the viability of cancer cell lines (HeLa, DU145, and HCT-116) and non-cancer lung fibroblasts (HLF; LL 47[MaDo]) was determined with the MTT cell viability assay and compared with known antineoplastic drugs. The biocompatibility at an organismal level was verified in a murine model by histological examination. A lipophilic bismuth nanoparticle hydrogel at 50 µM time-dependently inhibited the growth of the three cancer cell lines, in a time-dependent way. A 1-hour exposure to 250 µM lipophilic bismuth nanoparticle hydrogel, inhibited the growth of the three cancer cell lines. The in-vitro efficacy of lipophilic bismuth nanoparticle was similar to the one of docetaxel and cisplatin, but without inhibiting the growth of non-cancer control cells. Histology confirmed the biocompatibility of lipophilic bismuth nanoparticles as there were no signs of cytotoxicity or tissue damage in any of the evaluated organs (kidney, liver, brain, cerebellum, heart, and jejunum). In conclusion, a lipophilic bismuth nanoparticle hydrogel is an innovative, low-cost alternative for the topical treatment of cervicouterine, prostate, and colon human cancers.


Asunto(s)
Antineoplásicos/farmacología , Bismuto/farmacología , Neoplasias del Colon/tratamiento farmacológico , Nanopartículas/química , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias del Cuello Uterino/tratamiento farmacológico , Animales , Bismuto/química , Línea Celular Tumoral , Neoplasias del Colon/patología , Femenino , Células HeLa , Humanos , Hidrogeles/química , Masculino , Ratones , Ratones Endogámicos BALB C , Neoplasias de la Próstata/patología , Neoplasias del Cuello Uterino/patología
15.
Foods ; 8(6)2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-31151233

RESUMEN

The addition of flaxseed and amaranth on the physicochemical, functional, and microstructural changes of instant-extruded products was evaluated. Six mixtures with different proportions of amaranth (18.7-33.1%), flaxseed (6.6-9.3%), maize grits (55.6-67.3%) and minor ingredients (4.7%) were extruded in a twin-screw extruder. Insoluble and soluble fiber contents in extrudates increased as the proportions of amaranth and flaxseed increased. However, the highest flaxseed proportion had the highest soluble fiber content (1.9%). Extruded products with the highest proportion of flaxseed and amaranth resulted in the highest dietary fiber content and hardness values (5.2 N), which was correlated with the microstructural analysis where the crystallinity increased, resulting in larger, and more compact laminar structure. The extruded products with the highest maize grits proportion had the highest viscosity, expansion, and water absorption indexes, and the lowest water solubility index values. The mixtures with amaranth (18.7-22.9%), flaxseed (8.6-9.3%), and maize grits (63.8-67.3%) resulted in extruded products with acceptable physicochemical and functional properties.

16.
Biomolecules ; 9(12)2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31888291

RESUMEN

The pecan (Carya illinoinensis) nut shell is an important byproduct of the food processing industry that has not been previously explored as an antioxidant compound. This work aims to study the effect of the extrusion temperature and screw speed on the moisture content, water and oil absorption index, water solubility index, color, phenolic compounds, condensed tannin compounds, and antioxidant activity of pecan nut shell extrudates. Extrusion variables were adjusted using a response surface methodology. Extrusion, performed at 70 °C and 150 rpm, almost doubled the concentration of polyphenols in the non-extruded shell and significantly increased radical scavenging activity. Compounds in extrudates, performed at 70 °C and 150 rpm, were quantified by high-performance liquid chromatography (HPLC) with a diode-array detector (DAD) and identified by liquid chromatography coupled with time-of-flight mass spectrometry (LC-MSD-TOF). Extrusion significantly increased most phenolic acid compounds, including gallic acid, ellagic acid pentose, ellagic acid, dimethyl ellagic acid rhamnoside, and dimethyl ellagic acid. The soluble fiber in extrudates was more than three-fold higher than in the control. Therefore, extrusion at 70 °C and 150 rpm increased the concentration of phenolic compounds, antioxidant activity, and total dietary and soluble fiber. Our findings support the notion that extruded pecan nut shell can be used in clean-label products and improve their nutraceutical value.


Asunto(s)
Antioxidantes/farmacología , Carya/química , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Compuestos de Bifenilo/antagonistas & inhibidores , Fenoles , Picratos/antagonistas & inhibidores , Propiedades de Superficie
17.
J Food Sci Technol ; 55(12): 4964-4972, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30482992

RESUMEN

Dry soybean (Glycine max) residue (SBR) is a byproduct rich in dietary fibre and protein with high levels of essential amino acids. The effects due to the substitution of refined wheat flour with 5% or 10% SBR in dough rheology and hot-press tortilla texture, dimensions, colour, protein and dietary fibre contents were studied. Substitution of 10% SBR improved flour in terms of gluten strength and sedimentation without significantly affecting dough hardness, cohesiveness, adhesiveness, and extensibility. The dimensions, colour and sensory acceptance of the supplemented tortillas were not affected by the addition of the SBR. The 10% SBR tortillas contained 1.77 times more insoluble dietary fibre, protein content of 9.3%, in vitro protein digestibility of 84% and protein digestibility corrected amino acid score (PDCAAS) of 52.63%. Results indicated that wheat flour tortillas with 10% SBR an excellent alternative to regular counterparts owing to their higher dietary fibre and protein quantity and quality.

18.
Molecules ; 21(8)2016 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-27537864

RESUMEN

Effects of extrusion cooking and low-temperature storage on the physicochemical changes and resistant starch (RS) content in cornstarch were evaluated. The cornstarch was conditioned at 20%-40% moisture contents and extruded in the range 90-130 °C and at screw speeds in the range 200-360 rpm. The extrudates were stored at 4 °C for 120 h and then at room temperature. The water absorption, solubility index, RS content, viscoelastic, thermal, and microstructural properties of the extrudates were evaluated before and after storage. The extrusion temperature and moisture content significantly affected the physicochemical properties of the extrudates before and after storage. The RS content increased with increasing moisture content and extrusion temperature, and the viscoelastic and thermal properties showed related behaviors. Microscopic analysis showed that extrusion cooking damaged the native starch structure, producing gelatinization and retrogradation and forming RS. The starch containing 35% moisture and extruded at 120 °C and 320 rpm produced the most RS (1.13 g/100 g) after to storage at low temperature. Although the RS formation was low, the results suggest that extrusion cooking could be advantageous for RS production and application in the food industry since it is a pollution less, continuous process requiring only a short residence time.


Asunto(s)
Manipulación de Alimentos/métodos , Almidón/química , Agua/química , Culinaria , Industria de Alimentos , Microscopía Electrónica de Rastreo , Solubilidad , Temperatura , Termodinámica
19.
Food Chem ; 192: 90-7, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26304324

RESUMEN

Ethanolic extract from black beans coat is a source of flavonoids, saponins and antocyanins. Nixtamalized maize flours (NF) are used for the preparation of products such as tortillas, tortillas chips, cookies among others. The objective of this research was to study the effect on textural parameters and color after adding flavonoids, saponins and anthocyanins from black bean seed coat in NF used for the production of tortillas and gluten-free cookies. Furthermore, the retention of bioactive compounds after tortilla and gluten-free-cookie preparation was assessed. Ethanolic extracts of black bean seed coats were added (3g/kg or 7 g/kg) to NF in order to prepare corn tortillas and gluten free cookies characterized in terms of dimensions, color and texture. Addition of 7 g/kg affected the color of cookies and tortillas without effect on texture and dimensions. It was possible to retain more than 80% and 60% of bioactives into baked tortillas and cookies, respectively.


Asunto(s)
Antocianinas/química , Pan/análisis , Flavonoides/química , Harina/análisis , Phaseolus/química , Saponinas/química , Zea mays/química , Semillas/química
20.
Molecules ; 20(5): 8875-92, 2015 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-25993418

RESUMEN

Red cactus pear has significant antioxidant activity and potential as a colorant in food, due to the presence of betalains. However, the betalains are highly thermolabile, and their application in thermal process, as extrusion cooking, should be evaluated. The aim of this study was to evaluate the effect of extrusion conditions on the chemical components of red cactus pear encapsulated powder. Cornstarch and encapsulated powder (2.5% w/w) were mixed and processed by extrusion at different barrel temperatures (80, 100, 120, 140 °C) and screw speeds (225, 275, 325 rpm) using a twin-screw extruder. Mean residence time (trm), color (L*, a*, b*), antioxidant activity, total polyphenol, betacyanin, and betaxanthin contents were determined on extrudates, and pigment degradation reaction rate constants (k) and activation energies (Ea) were calculated. Increases in barrel temperature and screw speed decreased the trm, and this was associated with better retentions of antioxidant activity, total polyphenol, betalain contents. The betacyanins k values ranged the -0.0188 to -0.0206/s and for betaxanthins ranged of -0.0122 to -0.0167/s, while Ea values were 1.5888 to 6.1815 kJ/mol, respectively. The bioactive compounds retention suggests that encapsulated powder can be used as pigments and to provide antioxidant properties to extruded products.


Asunto(s)
Betalaínas/química , Cactaceae/química , Culinaria/métodos , Manipulación de Alimentos/métodos , Antioxidantes/química , Betacianinas/química , Betaxantinas/química , Ácidos Picolínicos/química , Pigmentos Biológicos , Polifenoles/química , Polvos/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...