Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(8)2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35456985

RESUMEN

Theophylline (3-methyxanthine) is a historically prominent drug used to treat respiratory diseases, alone or in combination with other drugs. The rapid onset of the COVID-19 pandemic urged the development of effective pharmacological treatments to directly attack the development of new variants of the SARS-CoV-2 virus and possess a therapeutical battery of compounds that could improve the current management of the disease worldwide. In this context, theophylline, through bronchodilatory, immunomodulatory, and potentially antiviral mechanisms, is an interesting proposal as an adjuvant in the treatment of COVID-19 patients. Nevertheless, it is essential to understand how this compound could behave against such a disease, not only at a pharmacodynamic but also at a pharmacokinetic level. In this sense, the quickest approach in drug discovery is through different computational methods, either from network pharmacology or from quantitative systems pharmacology approaches. In the present review, we explore the possibility of using theophylline in the treatment of COVID-19 patients since it seems to be a relevant candidate by aiming at several immunological targets involved in the pathophysiology of the disease. Theophylline down-regulates the inflammatory processes activated by SARS-CoV-2 through various mechanisms, and herein, they are discussed by reviewing computational simulation studies and their different applications and effects.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Antivirales/farmacocinética , Antivirales/uso terapéutico , Humanos , Simulación del Acoplamiento Molecular , Pandemias , SARS-CoV-2 , Teofilina/farmacología , Teofilina/uso terapéutico
2.
Int J Mol Sci ; 22(11)2021 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-34067243

RESUMEN

The COVID-19 pandemic has established an unparalleled necessity to rapidly find effective treatments for the illness; unfortunately, no specific treatment has been found yet. As this is a new emerging chaotic situation, already existing drugs have been suggested to ameliorate the infection of SARS-CoV-2. The consumption of caffeine has been suggested primarily because it improves exercise performance, reduces fatigue, and increases wakefulness and awareness. Caffeine has been proven to be an effective anti-inflammatory and immunomodulator. In airway smooth muscle, it has bronchodilator effects mainly due to its activity as a phosphodiesterase inhibitor and adenosine receptor antagonist. In addition, a recent published document has suggested the potential antiviral activity of this drug using in silico molecular dynamics and molecular docking; in this regard, caffeine might block the viral entrance into host cells by inhibiting the formation of a receptor-binding domain and the angiotensin-converting enzyme complex and, additionally, might reduce viral replication by the inhibition of the activity of 3-chymotrypsin-like proteases. Here, we discuss how caffeine through certain mechanisms of action could be beneficial in SARS-CoV-2. Nevertheless, further studies are required for validation through in vitro and in vivo models.


Asunto(s)
Antiinflamatorios/farmacología , Antivirales/farmacología , COVID-19/dietoterapia , Cafeína/farmacología , Reposicionamiento de Medicamentos/métodos , Músculo Liso/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , COVID-19/metabolismo , COVID-19/fisiopatología , Humanos , Factores Inmunológicos/farmacología , Simulación de Dinámica Molecular , Músculo Liso/metabolismo , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...