Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Intervalo de año de publicación
1.
Infect Drug Resist ; 16: 6843-6857, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908782

RESUMEN

Background: Mycoses are a growing threat to human health, and systemic candidiasis caused by Candida parapsilosis and Candida tropicalis is frequent in immunocompromised patients. Biofilm formation is a virulence factor found in these organisms, as sessile cells adhere to surfaces, the stratification and production of extracellular matrix provides protection and resistance to antifungal drugs. Previous evidence indicated that the N-linked mannosylation pathway is relevant to C. albicans biofilms, but its contribution to other species remains unknown. Methods: C. parapsilosis and C. tropicalis och1∆ mutants, which have a disrupted N-linked mannosylation pathway, were used to form biofilms. In addition, wild-type and mutant cells were also treated to remove N-linked mannans or block this pathway. Biofilms were analyzed by quantifying the included fungal biomass, and extracellular matrix components. Moreover, gene expression and secreted hydrolytic enzymes were also quantified in these biofilms. Results: The och1∆ mutants showed a reduced ability to form biofilms in both fungal species when compared to the wild-type and control strains. This observation was confirmed by trimming N-linked mannans from walls or blocking the pathway with tunicamycin B. According to this observation, mutant, and treated cells showed an altered composition of the extracellular matrix and increased susceptibility to antifungal drugs when compared to control or untreated cells. The gene expression of secreted virulence factors, such as aspartyl proteinases and phospholipases, was normal in all the tested cells but the secreted activity was reduced, suggesting a defect in the secretory pathway, which was later confirmed by treating cells with brefeldin A. Conclusion: Proper N-linked mannosylation is required for biofilm formation in both C. parapsilosis and C. tropicalis. Disruption of this posttranslational modification affected the secretory pathway, offering a link between glycosylation and biofilm formation.

2.
J Fungi (Basel) ; 9(2)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36836256

RESUMEN

Candida albicans is an opportunistic fungal pathogen that may cause invasive infections in immunocompromised patients, disseminating through the bloodstream to other organs. In the heart, the initial step prior to invasion is the adhesion of the fungus to endothelial cells. Being the fungal cell wall's outermost structure and the first to come in contact with host cells, it greatly modulates the interplay that later will derive in the colonization of the host tissue. In this work, we studied the functional contribution of N-linked and O-linked mannans of the cell wall of C. albicans to the interaction with the coronary endothelium. An isolated rat heart model was used to assess cardiac parameters related to vascular and inotropic effects in response to phenylephrine (Phe), acetylcholine (aCh) and angiotensin II (Ang II) when treatments consisting of: (1) live and heat-killed (HK) C. albicans wild-type yeasts; (2) live C. albicans pmr1Δ yeasts (displaying shorter N-linked and O-linked mannans); (3) live C. albicans without N-linked and O-linked mannans; and (4) isolated N-linked and O-linked mannans were administered to the heart. Our results showed that C. albicans WT alters heart coronary perfusion pressure (vascular effect) and left ventricular pressure (inotropic effect) parameters in response to Phe and Ang II but not aCh, and these effects can be reversed by mannose. Similar results were observed when isolated cell walls, live C. albicans without N-linked mannans or isolated O-linked mannans were perfused into the heart. In contrast, C. albicans HK, C. albicans pmr1Δ, C. albicans without O-linked mannans or isolated N-linked mannans were not able to alter the CPP and LVP in response to the same agonists. Taken together, our data suggest that C. albicans interaction occurs with specific receptors on coronary endothelium and that O-linked mannan contributes to a greater extent to this interaction. Further studies are necessary to elucidate why specific receptors preferentially interact with this fungal cell wall structure.

3.
J Med Virol ; 94(3): 1154-1161, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34755347

RESUMEN

Numerous reports of neuropsychiatric symptoms highlighted the pathologic potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its relationship the onset and/or exacerbation of mental disease. However, coronavirus disease 2019 (COVID-19) treatments, themselves, must be considered as potential catalysts for new-onset neuropsychiatric symptoms in COVID-19 patients. To date, immediate and long-term neuropsychiatric complications following SARS-CoV-2 infection are currently unknown. Here we report on five patients with SARS-CoV-2 infection with possible associated neuropsychiatric involvement, following them clinically until resolution of their symptoms. We will also discuss the contributory roles of chloroquine and dexamethasone in these neuropsychiatric presentations.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Trastornos Mentales , COVID-19/complicaciones , Cloroquina/uso terapéutico , Humanos , Trastornos Mentales/complicaciones , SARS-CoV-2
4.
Infez Med ; 29(2): 199-208, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34061784

RESUMEN

Visceral leishmaniasis is a neglected zoonotic disease that affects animals and humans in different tropical and subtropical regions and even beyond, with variable prevalence among infected hosts. To date, there have been no systematic reviews on human visceral leishmaniasis prevalence in Latin America. We therefore performed a systematic literature review with meta-analysis, using six databases to assess prevalence of visceral leishmaniasis in human patients in Latin American countries. Observational studies were included but analyzed separately. We performed a random-effects model meta-analysis to calculate the pooled prevalence and 95% confidence interval (95%CI). In all, 10,435 articles were retrieved for the time frame (1950-2019). After initial screening, 120 articles were selected for full-text assessment, 97 being finally included for qualitative and quantitative analyses. Overall, VL pooled prevalence was estimated at 38.8% (95% CI 33.8-43.8%), derived from 97 studies, including 44,986 individuals. Many aspects of the transmission dynamics of Leishmania and the exact burden of this parasitosis on public health remain largely unknown. Although the elimination of zoonotic VL in the Americas appears an unrealistic goal, additional efforts need to be put in place to achieve better diagnosis, treatment, and prevention of VL.


Asunto(s)
Leishmaniasis Visceral , Zoonosis , Animales , América Latina/epidemiología , Leishmaniasis Visceral/epidemiología , Prevalencia , Zoonosis/epidemiología
6.
Int J Infect Dis ; 102: 87-96, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32829048

RESUMEN

Bats have populated earth for approximately 52 million years, serving as natural reservoirs for a variety of viruses through the course of evolution. Transmission of highly pathogenic viruses from bats has been suspected or linked to a spectrum of potential emerging infectious diseases in humans and animals worldwide. Examples of such viruses include Marburg, Ebolavirus, Nipah, Hendra, Influenza A, Dengue, Equine Encephalitis viruses, Lyssaviruses, Madariaga and Coronaviruses, involving the now pandemic Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Herein, we provide a narrative review focused in selected emerging viral infectious diseases that have been reported from bats.


Asunto(s)
COVID-19/transmisión , Quirópteros/virología , Reservorios de Enfermedades/virología , Ecosistema , SARS-CoV-2/aislamiento & purificación , Animales , Enfermedades Transmisibles Emergentes/transmisión , Enfermedades Transmisibles Emergentes/veterinaria , Humanos
7.
Int J Antimicrob Agents ; 56(2): 106037, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32479893

RESUMEN

Ivermectin (IVM) is a robust antiparasitic drug with an excellent tolerance and safety profile. Historically it has been the drug of choice for onchocerciasis and lymphatic filariasis global elimination programs. IVM is an oral insecticide and is a standard treatment against intestinal helminths and ectoparasites. The current humanitarian crisis in Venezuela is a regional public health threat that requires immediate action. The public health system in Venezuela has crumbled because of a 70% shortage of medicines in public hospitals, low vaccination campaigns, and the mass exodus of medical personnel. Herein we discuss the repurposing of IVM to attenuate the burden imposed by the most prevalent neglected tropical diseases (NTDs) in Venezuela, including soil-transmitted helminths, ectoparasites and, possibly, vector-borne diseases, such as malaria. In addition, novel experimental evidence has shown that IVM is active and efficacious in vitro against Chagas disease, Leishmaniases, arboviruses, and SARS-CoV-2. In crisis-hit Venezuela, all these infectious diseases are public health emergencies that have long been ignored and require immediate attention. The versatility of IVM could serve as a powerful tool to tackle the multiple overlapping endemic and emergent diseases that currently affect Venezuela. The repurposing of this multipurpose drug would be a timely therapeutic approach to help mitigate the tremendous burden of NTDs nationwide.


Asunto(s)
Antiparasitarios/uso terapéutico , Reposicionamiento de Medicamentos , Ivermectina/uso terapéutico , Enfermedades Parasitarias/tratamiento farmacológico , Humanos , Venezuela
8.
Infect Drug Resist ; 11: 903-913, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30013373

RESUMEN

Human fungal infections remain a major challenge in medicine. Only a limited number of antifungal drugs are available, which are often related to severe adverse effects. In addition, there is an increased emergence related to resistant strains, which makes imperative to understand the host-pathogen interactions as well as to develop alternative treatments. Host innate and adaptive immunity play a crucial role controlling fungal infections; therefore, vaccines are a viable tool to prevent and treat fungal pathogens. Innate immunity is triggered by the interaction between the cell surface pattern recognition receptors (PRRs) and the pathogen-associated molecular patterns (PAMPs). Such an initial immunological response is yet little understood in fungal infections, in part due to the complexity and plasticity of the fungal cell walls. Described host cell-fungus interactions and antigenic molecules are addressed in this paper. Furthermore, antigens found in the cell wall and capsule, including peptides, glycoproteins, glycolipids, and glycans, have been used to trigger specific immune responses, and an increased production of antibodies has been observed when attached to immunogenic molecules. The recent biotechnological advances have allowed the development of vaccines against viral and bacterial pathogens with positive results; therefore, this technology has been applied to develop anti-fungal vaccines. Passive immunization has also emerged as an appealing alternative to treat disseminated mycosis, especially in immunocompromised patients. Those approaches have a long way to be seen in clinical cases. However, all studies discussed here open the possibility to have access to new therapies to be applied alone or in combination with current antifungal drugs. Herein, the state of the art of fungal vaccine developments is discussed in this review, highlighting new advances against Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans, Paracoccidioides brasiliensis, and Sporothrix spp.

9.
Front Microbiol ; 8: 843, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28539922

RESUMEN

Sporothrix schenckii sensu stricto and S. brasiliensis are usually associated to sporotrichosis, a subcutaneous mycosis worldwide distributed. Comparative analyses between these two species indicate they contain genetic and physiological differences that are likely to impact the interaction with host cells. Here, we study the composition of the cell wall from conidia, yeast-like cells and germlings of both species and found they contained the same sugar composition. The carbohydrate proportion in the S. schenckii sensu stricto wall was similar across the three cell morphologies, with exception in the chitin content, which was significantly different in the three morphologies. The cell wall from germlings showed lower rhamnose content and higher glucose levels than other cell morphologies. In S. brasiliensis, the wall sugars were constant in the three morphologies, but glucose was lower in yeast-like cells. In S. schenckii sensu stricto cells most of chitin and ß1,3-glucan were underneath wall components, but in S. brasiliensis germlings, chitin was exposed at the cell surface, and ß1,3-glucan was found in the outer part of the conidia wall. We also compared the ability of these cells to stimulate cytokine production by human peripheral blood mononuclear cells. The three S. schenckii sensu stricto morphologies stimulated increased levels of pro-inflammatory cytokines, when compared to S. brasiliensis cells; while the latter, with exception of conidia, stimulated higher IL-10 levels. Dectin-1 was a key receptor for cytokine production during stimulation with the three morphologies of S. schenckii sensu stricto, but dispensable for cytokine production stimulated by S. brasiliensis germlings. TLR2 and TLR4 were also involved in the sensing of Sporothrix cells, with a major role for the former during cytokine stimulation. Mannose receptor had a minor contribution during cytokine stimulation by S. schenckii sensu stricto yeast-like cells and germlings, but S. schenckii sensu stricto conidia and S. brasiliensis yeast-like cells stimulated pro-inflammatory cytokines via this receptor. In conclusion, S. brasiliensis and S. schenckii sensu stricto, have similar wall composition, which undergoes changes depending on the cell morphology. These differences in the cell wall composition, are likely to influence the contribution of immune receptors during cytokine stimulation by human monocytes.

10.
J Fungi (Basel) ; 3(4)2017 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-29371567

RESUMEN

The recognition of fungal cells by the host immune system is key during the establishment of a protective anti-fungal response. Even though the immune system has evolved a vast number of processes to control these organisms, they have developed strategies to fight back, avoiding the proper recognition by immune components and thus interfering with the host protective mechanisms. Therefore, the strategies to evade the immune system are as important as the virulence factors and attributes that damage the host tissues and cells. Here, we performed a thorough revision of the main fungal tactics to escape from the host immunosurveillance processes. These include the composition and organization of the cell wall, the fungal capsule, the formation of titan cells, biofilms, and asteroid bodies; the ability to undergo dimorphism; and the escape from nutritional immunity, extracellular traps, phagocytosis, and the action of humoral immune effectors.

11.
Curr Protein Pept Sci ; 18(11): 1090-1097, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27526926

RESUMEN

Protein glycosylation is a widely distributed posttranslational modification, though not exclusive to eukaryotic cells. The addition of glycans to proteins plays crucial roles in protein folding and secretion, cell-cell interaction, functional specificity and structural properties of both secreted and membrane-bound proteins. In this review, we emphasize the N-linked glycosylation pathway found in eukaryotic cells, the contribution of processing α-glycosidases, and the use of such enzymes as potential drug targets to control some medically relevant viral infections. Thus far, some inhibitors of the endoplasmic reticulum α -glucosidases such as castanospermine, 1-deoxyjirimycin and derivative molecules have been shown to control viral particles in both in vitro and in vivo models. Nonetheless, the mechanism used for these molecules to inhibit specific viral groups, without affecting the host cells, remains unknown. Furthermore, certain α-mannosidase inhibitors have proven to be helpful in cancer therapy, either improving the sensitivity to chemotherapeutic drugs or reducing metastasis of the tumor. Undeniably promising, the use of α-glycosidase inhibitors rises as an alternative to control both viral infections and cancer. Despite the significant progress in the field, it remains to be demonstrated whether those inhibitors are good candidates to control other pathogens and if so, a careful treatment of the data must be done before extrapolating their use to other systems.


Asunto(s)
Antineoplásicos/farmacología , Antivirales/farmacología , Retículo Endoplásmico/efectos de los fármacos , Inhibidores de Glicósido Hidrolasas/farmacología , Neoplasias/tratamiento farmacológico , Procesamiento Proteico-Postraduccional , Virosis/tratamiento farmacológico , 1-Desoxinojirimicina/farmacología , Animales , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Células Eucariotas/efectos de los fármacos , Células Eucariotas/virología , Glicosilación , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Indolizinas/farmacología , Manosidasas/antagonistas & inhibidores , Manosidasas/genética , Manosidasas/metabolismo , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología , Virosis/enzimología , Virosis/genética , Virosis/virología , Virus/efectos de los fármacos , Virus/crecimiento & desarrollo , alfa-Glucosidasas/genética , alfa-Glucosidasas/metabolismo
12.
Front Microbiol ; 7: 1951, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27994582

RESUMEN

The fungal cell wall contains glycoproteins that interact with the host immune system. In the prominent pathogenic yeast Candida albicans, Pmr1 acts as a Golgi-resident ion pump that provides cofactors to mannosyltransferases, regulating the synthesis of mannans attached to glycoproteins. To gain insight into a putative conservation of such a crucial process within opportunistic yeasts, we were particularly interested in studying the role of the PMR1 homolog in a low-virulent species that rarely causes candidiasis, Candida guilliermondii. We disrupted C. guilliermondii PMR1 and found that loss of Pmr1 affected cell growth and morphology, biofilm formation, susceptibility to cell wall perturbing agents, mannan levels, and the wall composition and organization. Despite the significant increment in the amount of ß1,3-glucan exposed at the wall surface, this positively influenced only the ability of the mutant to stimulate IL-10 production by human monocytes, suggesting that recognition of both mannan and ß1,3-glucan, is required to stimulate strong levels of pro-inflammatory cytokines. Accordingly, our results indicate C. guilliermondii sensing by monocytes was critically dependent on the recognition of N-linked mannans and ß1,3-glucan, as reported in other Candida species. In addition, chemical remotion of cell wall O-linked mannans was found to positively influence the recognition of C. guilliermondii by human monocytes, suggesting that O-linked mannans mask other cell wall components from immune cells. This observation contrasts with that reported in C. albicans. Finally, mice infected with C. guilliermondii pmr1Δ null mutant cells had significantly lower fungal burdens compared to animals challenged with the parental strain. Accordingly, the null mutant showed inability to kill larvae in the Galleria mellonella infection model. This study thus demonstrates that mannans are relevant for the C. guilliermondii-host interaction, with an atypical role for O-linked mannans.

13.
Front Microbiol ; 7: 306, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27014229

RESUMEN

Candida parapsilosis is an important, emerging opportunistic fungal pathogen. Highly mannosylated fungal cell wall proteins are initial contact points with host immune systems. In Candida albicans, Och1 is a Golgi α1,6-mannosyltransferase that plays a key role in the elaboration of the N-linked mannan outer chain. Here, we disrupted C. parapsilosis OCH1 to gain insights into the contribution of N-linked mannosylation to cell fitness and to interactions with immune cells. Loss of Och1 in C. parapsilosis resulted in cellular aggregation, failure of morphogenesis, enhanced susceptibility to cell wall perturbing agents and defects in wall composition. We removed the cell wall O-linked mannans by ß-elimination, and assessed the relevance of mannans during interaction with human monocytes. Results indicated that O-linked mannans are important for IL-1ß stimulation in a dectin-1 and TLR4-dependent pathway; whereas both, N- and O-linked mannans are equally important ligands for TNFα and IL-6 stimulation, but neither is involved in IL-10 production. Furthermore, mice infected with C. parapsilosis och1Δ null mutant cells had significantly lower fungal burdens compared to wild-type (WT)-challenged counterparts. Therefore, our data are the first to demonstrate that C. parapsilosis N- and O-linked mannans have different roles in host interactions than those reported for C. albicans.

14.
J Org Chem ; 81(7): 2888-98, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26966917

RESUMEN

Eleven formyl-containing BODIPY dyes were prepared by means of either the Liebeskind-Srogl cross-coupling reaction or the Vilsmeier reaction. These dyes were used as components in the Passerini reaction to give highly substituted BODIPY dyes. A joined spectroscopic and theoretical characterization of the synthesized compounds was conducted to unravel the impact of the structural rigidity/flexibility on the photophysical signatures. These dyes were tested as fluorescent trackers for phagocytosis. Additionally, they proved to be useful to stain different blood cells with an intense and stable signal at a very low exposure time.


Asunto(s)
Colorantes Fluorescentes/química , Compuestos de Boro , Citofagocitosis/efectos de los fármacos , Estructura Molecular , Espectrofotometría Ultravioleta
15.
Fungal Genet Biol ; 76: 36-46, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25677379

RESUMEN

The cell wall of fungi is generally composed of an inner skeletal layer consisting of various polysaccharides surrounded by a layer of glycoproteins. These usually contain both N- and O-linked oligosaccharides, coupled to the proteins by stepwise addition of mannose residues by mannosyltransferases in the endoplasmic reticulum and the Golgi apparatus. In yeast, an essential luminal cofactor for these mannosyltransferases is Mn(2+) provided by the Ca(2+)/Mn(2+)-ATPase known as Pmr1. In this study, we have identified and characterized the Botrytis cinerea pmr1 gene, the closest homolog of yeast PMR1. We hypothesized that bcpmr1 also encodes a Ca(2+)/Mn(2+)-ATPase that plays an important role in the protein glycosylation pathway. Phenotypic analysis showed that bcpmr1 null mutants displayed a significant reduction in conidial production, radial growth and diameter of sclerotia. Significant alterations in hyphal cell wall composition were observed including a 83% decrease of mannan levels and an increase in the amount of chitin and glucan. These changes were accompanied by a hypersensitivity to cell wall-perturbing agents such as Calcofluor white, Congo red and zymolyase. Importantly, the Δbcpmr1 mutant showed reduced virulence in tomato (leafs and fruits) and apple (fruits) and reduced biofilm formation. Together, our results highlight the importance of bcpmr1 for protein glycosylation, cell wall structure and virulence of B. cinerea.


Asunto(s)
Botrytis/fisiología , Pared Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Malus/microbiología , Solanum lycopersicum/microbiología , Botrytis/crecimiento & desarrollo , Botrytis/patogenicidad , Frutas/microbiología , Solanum lycopersicum/citología , Malus/citología , Mutación , Hojas de la Planta/microbiología , Esporas Fúngicas/crecimiento & desarrollo , Virulencia
16.
Front Microbiol ; 6: 1527, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26793173

RESUMEN

The systemic infections caused by members of the Candida parapsilosis complex are currently associated to high morbility and mortality rates, and are considered as relevant as those caused by Candida albicans. Since the fungal cell wall is the first point of contact with the host cells, here we performed a comparison of this organelle in members of the C. parapsilosis complex, and its relevance during interaction with human peripheral blood mononuclear cells (PBMCs). We found that the wall of the C. parapsilosis complex members is similar in composition, but differs to that from C. albicans, with less mannan content and more ß-glucan and porosity levels. Furthermore, lectin-based analysis showed increased chitin and ß1,3-glucan exposure at the surface of C. parapsilosis sensu lato when compared to C. albicans. Yeast cells of members of the C. parapsilosis complex stimulated more cytokine production by human PBMCs than C. albicans cells; and this significantly changed upon removal of O-linked mannans, indicating this wall component plays a significant role in cytokine stimulation by C. parapsilosis sensu lato. When inner wall components were exposed on the wall surface, C. parapsilosis sensu stricto and C. metapsilosis, but not C. orthopsilosis, stimulated higher cytokine production. Moreover, we found a strong dependency on ß1,3-glucan recognition for the members of the C. parapsilosis complex, but not for live C. albicans cells; whereas TLR4 was required for TNFα production by the three members of the complex, and stimulation of IL-6 by C. orthopsilosis. Mannose receptor had a significant role during TNFα and IL-1ß stimulation by members of the complex. Finally, we demonstrated that purified N- and O-mannans from either C. parapsilosis sensu lato or C. albicans are capable to block the recognition of these pathogens by human PBMCs. Together; our results suggest that the innate immune recognition of the members of the C. parapsilosis complex is differential of that reported for C. albicans. In addition, we propose that purified cell wall mannans can be used as antagonist to block specific receptors on innate immune cells.

17.
Rev. iberoam. micol ; 31(1): 62-66, ene.-mar. 2014.
Artículo en Inglés | IBECS | ID: ibc-120470

RESUMEN

Candida albicans is the main causative agent of systemic candidiasis, a condition with high mortality rates. The study of the interaction between C. albicans and immune system components has been thoroughly studied and nowadays there is a model for the anti-C. albicans immune response; however, little is known about the sensing of other pathogenic species of the Candida genus. Sporothrix schenckii is the causative agent of sporotrichosis, a subcutaneous mycosis, and thus far there is limited information about its interaction with the immune system. In this paper, we review the most recent information about the immune sensing of species from genus Candida and S. schenckii. Thoroughly searches in scientific journal databases were performed, looking for papers addressing either Candida- or Sporothrix-immune system interactions. There is a significant advance in the knowledge of non-C. albicans species of Candida and Sporothrix immune sensing; however, there are still relevant points to address, such as the specific contribution of pathogen-associated molecular patterns (PAMPs) for sensing by different immune cells and the immune receptors involved in such interactions. This manuscript is part of the series of works presented at the “V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi” (Oaxaca, Mexico, 2012) (AU)


Candida albicans es el principal agente causante asociado a la candidiasis sistémica, una enfermedad con una tasa de mortalidad elevada. Se ha examinado cuidadosamente la interacción entre C. albicans y los componentes del sistema inmunitario y hoy día se ha establecido un modelo que describe la respuesta inmunitaria frente a este microorganismo. Sin embargo, apenas se conoce la de otras especies patógenas del género Candida. Sporothrix schenckii es el agente causal de la esporotricosis, una micosis subcutánea, y, hasta la fecha, solo disponemos de información limitada sobre su interacción con el sistema inmunitario. En el presente artículo revisamos la información más reciente sobre el reconocimiento inmunitario de las especies del género Candida y de S. schenckii. Se han llevado a cabo búsquedas exhaustivas en bases de datos de revistas científicas para identificar los artículos publicados sobre la interacción de Candida o Sporothrix con el sistema inmunitario. Se han hecho progresos sustanciales en el estudio del reconocimiento inmunitario de las especies de Candida diferentes de C. albicans y Sporothrix; sin embargo, todavía hay aspectos pertinentes que debemos abordar, tales como la contribución específica de los patrones moleculares asociados a patógenos durante el reconocimiento de estos hongos por diferentes tipos de células inmunitarias, y la identidad de los receptores inmunitarios que participan en dichas interacciones.Este artículo forma parte de una serie de estudios presentados en el «V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi» (Oaxaca, México, 2012) (AU)


Asunto(s)
Humanos , Masculino , Femenino , Relación Dosis-Respuesta Inmunológica , Candida/inmunología , Candida/aislamiento & purificación , Candida/patogenicidad , Sporothrix/inmunología , Sporothrix/aislamiento & purificación , Sporothrix/patogenicidad , Pared Celular/inmunología , Pared Celular/microbiología , Pared Celular , Pared Celular/patología , Pared Celular , Candida albicans/inmunología , Candida albicans/aislamiento & purificación , Candida albicans/patogenicidad
18.
Rev Iberoam Micol ; 31(1): 62-6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24252829

RESUMEN

Candida albicans is the main causative agent of systemic candidiasis, a condition with high mortality rates. The study of the interaction between C. albicans and immune system components has been thoroughly studied and nowadays there is a model for the anti-C. albicans immune response; however, little is known about the sensing of other pathogenic species of the Candida genus. Sporothrix schenckii is the causative agent of sporotrichosis, a subcutaneous mycosis, and thus far there is limited information about its interaction with the immune system. In this paper, we review the most recent information about the immune sensing of species from genus Candida and S. schenckii. Thoroughly searches in scientific journal databases were performed, looking for papers addressing either Candida- or Sporothrix-immune system interactions. There is a significant advance in the knowledge of non-C. albicans species of Candida and Sporothrix immune sensing; however, there are still relevant points to address, such as the specific contribution of pathogen-associated molecular patterns (PAMPs) for sensing by different immune cells and the immune receptors involved in such interactions. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012).


Asunto(s)
Candida/inmunología , Candidiasis/inmunología , Interacciones Huésped-Patógeno/inmunología , Sporothrix/inmunología , Esporotricosis/inmunología , Inmunidad Adaptativa , Animales , Antígenos Fúngicos/inmunología , Pared Celular/inmunología , Humanos , Inmunidad Celular , Huésped Inmunocomprometido , Subgrupos Linfocitarios/inmunología , Macrófagos/inmunología , Ratones , Neutrófilos/inmunología , Esporotricosis/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...