Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(29): e2304378120, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37428913

RESUMEN

ToxR, a Vibrio cholerae transmembrane one-component signal transduction factor, lies within a regulatory cascade that results in the expression of ToxT, toxin coregulated pilus, and cholera toxin. While ToxR has been extensively studied for its ability to activate or repress various genes in V. cholerae, here we present the crystal structures of the ToxR cytoplasmic domain bound to DNA at the toxT and ompU promoters. The structures confirm some predicted interactions, yet reveal other unexpected promoter interactions with implications for other potential regulatory roles for ToxR. We show that ToxR is a versatile virulence regulator that recognizes diverse and extensive, eukaryotic-like regulatory DNA sequences, that relies more on DNA structural elements than specific sequences for binding. Using this topological DNA recognition mechanism, ToxR can bind both in tandem and in a twofold inverted-repeat-driven manner. Its regulatory action is based on coordinated multiple binding to promoter regions near the transcription start site, which can remove the repressing H-NS proteins and prepares the DNA for optimal interaction with the RNA polymerase.


Asunto(s)
Vibrio cholerae , Vibrio cholerae/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/metabolismo , Virulencia , Proteínas Bacterianas/metabolismo , ADN/genética , ADN/metabolismo , Regulación Bacteriana de la Expresión Génica
2.
Acta Crystallogr D Struct Biol ; 77(Pt 1): 11-18, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33404521

RESUMEN

Medium-resolution cryo-electron microscopy maps, in particular when they include a significant number of α-helices, may allow the building of partial models that are useful for molecular-replacement searches in large crystallographic structures when the structures of homologs are not available and experimental phasing has failed. Here, as an example, the solution of the structure of a bacteriophage portal using a partial 30% model built into a 7.8 Šresolution cryo-EM map is shown. Inspection of the self-rotation function allowed the correct oligomerization state to be determined, and density-modification procedures using rotation matrices and a mask based on the cryo-EM structure were critical for solving the structure. A workflow is described that may be applicable to similar cases and this strategy is compared with direct use of the cryo-EM map for molecular replacement.


Asunto(s)
Bacteriófago T7/metabolismo , Proteínas de la Cápside/química , Microscopía por Crioelectrón/métodos , Modelos Moleculares , Conformación Proteica , Programas Informáticos
3.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 11): 508-516, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33135669

RESUMEN

The human pathogen Mycoplasma genitalium is responsible for urethritis in men, and for cervicitis and pelvic inflammatory disease in women. The adherence of M. genitalium to host target epithelial cells is mediated through an adhesion complex called Nap, which is essential for infectivity. Nap is a transmembrane dimer of heterodimers of the immunodominant proteins P110 and P140. The M. genitalium genome contains multiple copies of portions that share homology with the extracellular regions of P140 and P110 encoded by the genes mg191 and mg192, respectively. Homologous recombination between the genes and the copies allows the generation of a large diversity of P140 and P110 variants to overcome surveillance by the host immune system. Interestingly, the C-terminal domain (C-domain) of the extracellular region of P140, which is essential for the function of Nap by acting as a flexible stalk anchoring the protein to the mycoplasma membrane, presents a low degree of sequence variability. In the present work, the X-ray crystal structures of two crystal forms of a construct of the P140 C-domain are reported. In both crystal forms, the construct forms a compact octamer with D4 point-group symmetry. The structure of the C-domain determined in this work presents significant differences with respect to the structure of the C-domain found recently in intact P140. The structural plasticity of the C-domain appears to be a possible mechanism that may help in the functioning of the mycoplasma adhesion complex.


Asunto(s)
Proteínas Bacterianas/química , Mycoplasma genitalium/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Peso Molecular , Conformación Proteica , Dominios Proteicos
4.
Nat Commun ; 11(1): 5188, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33057023

RESUMEN

Mycoplasma pneumoniae is a bacterial human pathogen that causes primary atypical pneumonia. M. pneumoniae motility and infectivity are mediated by the immunodominant proteins P1 and P40/P90, which form a transmembrane adhesion complex. Here we report the structure of P1, determined by X-ray crystallography and cryo-electron microscopy, and the X-ray structure of P40/P90. Contrary to what had been suggested, the binding site for sialic acid was found in P40/P90 and not in P1. Genetic and clinical variability concentrates on the N-terminal domain surfaces of P1 and P40/P90. Polyclonal antibodies generated against the mostly conserved C-terminal domain of P1 inhibited adhesion of M. pneumoniae, and serology assays with sera from infected patients were positive when tested against this C-terminal domain. P40/P90 also showed strong reactivity against human infected sera. The architectural elements determined for P1 and P40/P90 open new possibilities in vaccine development against M. pneumoniae infections.


Asunto(s)
Adhesinas Bacterianas/inmunología , Adhesión Bacteriana/inmunología , Mycoplasma pneumoniae/inmunología , Neumonía por Mycoplasma/inmunología , Adhesinas Bacterianas/aislamiento & purificación , Adhesinas Bacterianas/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , Mycoplasma pneumoniae/aislamiento & purificación , Mycoplasma pneumoniae/patogenicidad , Neumonía por Mycoplasma/sangre , Neumonía por Mycoplasma/microbiología , Dominios Proteicos/inmunología
5.
Nat Commun ; 10(1): 3746, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31431626

RESUMEN

Double-stranded DNA bacteriophages package their genome at high pressure inside a procapsid through the portal, an oligomeric ring protein located at a unique capsid vertex. Once the DNA has been packaged, the tail components assemble on the portal to render the mature infective virion. The tail tightly seals the ejection conduit until infection, when its interaction with the host membrane triggers the opening of the channel and the viral genome is delivered to the host cell. Using high-resolution cryo-electron microscopy and X-ray crystallography, here we describe various structures of the T7 bacteriophage portal and fiber-less tail complex, which suggest a possible mechanism for DNA retention and ejection: a portal closed conformation temporarily retains the genome before the tail is assembled, whereas an open portal is found in the tail. Moreover, a fold including a seven-bladed ß-propeller domain is described for the nozzle tail protein.


Asunto(s)
Bacteriófago T7/fisiología , Proteínas de la Cápside/ultraestructura , Cápside/ultraestructura , Empaquetamiento del ADN , Modelos Moleculares , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , ADN Viral/metabolismo , Dominios Proteicos
6.
Cell Chem Biol ; 25(7): 871-879.e2, 2018 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-29754955

RESUMEN

Split inteins are expressed as two separated subunits (N-intein and C-intein) fused to the corresponding exteins. The specific association of both intein subunits precedes protein splicing, which results in excision of the intein subunits and in ligation, by a peptide bond, of the concomitant exteins. Catalytically active intein precursors are typically too reactive for crystallization or even isolation. Neq pol is the trans-intein of the B-type DNA polymerase I split gene from hyperthermophile Nanoarchaeum equitans. We have determined the crystal structures of both the isolated NeqN and the complex of NeqN and NeqC subunits carrying the wild-type sequences, including the essential catalytic residues Ser1 and Thr+1, in addition to seven and three residues of the N- and C-exteins, respectively. These structures provide detailed information on the unique oxyester chemistry of the splicing mechanism of Neq pol and of the extensive rearrangements that occur in NeqN during the association step.


Asunto(s)
ADN Polimerasa I/genética , Inteínas/genética , Nanoarchaeota/genética , Empalme de Proteína/genética , ADN Polimerasa I/química , Conformación Proteica
7.
Proc Natl Acad Sci U S A ; 114(32): E6526-E6535, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28739894

RESUMEN

Relaxases are metal-dependent nucleases that break and join DNA for the initiation and completion of conjugative bacterial gene transfer. Conjugation is the main process through which antibiotic resistance spreads among bacteria, with multidrug-resistant staphylococci and streptococci infections posing major threats to human health. The MOBV family of relaxases accounts for approximately 85% of all relaxases found in Staphylococcus aureus isolates. Here, we present six structures of the MOBV relaxase MobM from the promiscuous plasmid pMV158 in complex with several origin of transfer DNA fragments. A combined structural, biochemical, and computational approach reveals that MobM follows a previously uncharacterized histidine/metal-dependent DNA processing mechanism, which involves the formation of a covalent phosphoramidate histidine-DNA adduct for cell-to-cell transfer. We discuss how the chemical features of the high-energy phosphorus-nitrogen bond shape the dominant position of MOBV histidine relaxases among small promiscuous plasmids and their preference toward Gram-positive bacteria.


Asunto(s)
Proteínas Bacterianas/química , Roturas del ADN de Cadena Simple , ADN Bacteriano/química , Endodesoxirribonucleasas/química , Modelos Moleculares , Plásmidos/química , Staphylococcus aureus/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Histidina/química , Histidina/genética , Histidina/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Staphylococcus aureus/genética
8.
PLoS One ; 10(8): e0134569, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26248042

RESUMEN

A limited repertoire of PPP family of serine/threonine phosphatases with a highly conserved catalytic domain acts on thousands of protein targets to orchestrate myriad central biological roles. A major structural reorganization of human calcineurin, a ubiquitous Ser/Thr PPP regulated by calcium and calmodulin and targeted by immunosuppressant drugs cyclosporin A and FK506, is unveiled here. The new conformation involves trans- to cis-isomerization of proline in the SAPNY sequence, highly conserved across PPPs, and remodels the main regulatory site where NFATc transcription factors bind. Transitions between cis- and trans-conformations may involve peptidyl prolyl isomerases such as cyclophilin A and FKBP12, which are known to physically interact with and modulate calcineurin even in the absence of immunosuppressant drugs. Alternative conformations in PPPs provide a new perspective on interactions with substrates and other protein partners and may foster development of more specific inhibitors as drug candidates.


Asunto(s)
Calcineurina/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Calcineurina/química , Calcineurina/genética , Dominio Catalítico , Cristalografía por Rayos X , Ciclofilina A/metabolismo , Ciclosporina/química , Ciclosporina/metabolismo , Células HEK293 , Humanos , Isomerismo , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Factores de Transcripción NFATC/química , Factores de Transcripción NFATC/metabolismo , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia , Proteína 1A de Unión a Tacrolimus/metabolismo
9.
Plasmid ; 70(1): 120-30, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23562993

RESUMEN

The MobM relaxase (494 amino acids) encoded by the promiscuous streptococcal plasmid pMV158 recognizes the plasmid origin of transfer, oriTpMV158, and converts supercoiled pMV158 DNA into relaxed molecules by cleavage of the phosphodiester bond of a specific dinucleotide within the sequence 5'-GTGTG/TT-3' ("/" being the nick site). After cleavage, the protein remains stably bound to the 5'-end of the nick site. Band-shift assays with single-stranded oligonucleotides and size-exclusion chromatography allowed us to show that MobM was able to generate specific complexes with one of the inverted repeats of the oriTpMV158, presumably extruded as stem-loop structure. A number of tests have been performed to attain a better characterization of the nicking activity of MobM and its linkage with its target DNA. The optimal pH for DNA relaxation was found to be 6.5. Upon nicking, gel retardation assays showed that MobM formed stable complexes with its target DNA. Moreover, MobM bound to relaxed pMV158 molecules were visualized by electron microscopy. The staphylococcal plasmids pUB110 and pE194, and the streptococcal plasmid pDL287 harbour putative oriTs and may encode Mob proteins homologous to MobM. The oriTpUB110, oriTpDL287, and oriTpE194 sequences share 100%, 70%, and 67% (in a 43-nucleotide stretch and allowing a 3-bp gap) identity to oriTpMV158, respectively. Nicking assays using supercoiled DNAs from pUB110, pDL287, and pE194 showed that MobM was able to relax, to differing degrees, all plasmid DNAs. Our results suggest that cross-recognition of heterologous oriTs by Mob proteins could play an important role in the plasmid spreading between bacteria.


Asunto(s)
Proteínas Bacterianas/genética , ADN Bacteriano/genética , ADN Superhelicoidal/genética , Endodesoxirribonucleasas/genética , Plásmidos/genética , Streptococcus pneumoniae/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Sitios de Unión , Conjugación Genética , ADN Bacteriano/química , ADN Bacteriano/metabolismo , ADN Superhelicoidal/química , ADN Superhelicoidal/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Endodesoxirribonucleasas/metabolismo , Concentración de Iones de Hidrógeno , Secuencias Invertidas Repetidas , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Plásmidos/química , Plásmidos/metabolismo , Unión Proteica , Homología de Secuencia de Ácido Nucleico , Streptococcus pneumoniae/enzimología
10.
J Bacteriol ; 195(13): 3000-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23625844

RESUMEN

A crucial element in the horizontal transfer of mobilizable and conjugative plasmids is the relaxase, a single-stranded endonuclease that nicks the origin of transfer (oriT) of the plasmid DNA. The relaxase of the pMV158 mobilizable plasmid is MobM (494 residues). In solution, MobM forms a dimer through its C-terminal domain, which is proposed to anchor the protein to the cell membrane and to participate in type 4 secretion system (T4SS) protein-protein interactions. In order to gain a deeper insight into the structural MobM requirements for efficient DNA catalysis, we studied two endonuclease domain variants that include the first 199 or 243 amino acid residues (MobMN199 and MobMN243, respectively). Our results confirmed that the two proteins behaved as monomers in solution. Interestingly, MobMN243 relaxed supercoiled DNA and cleaved single-stranded oligonucleotides harboring oriTpMV158, whereas MobMN199 was active only on supercoiled DNA. Protein stability studies using gel electrophoresis and mass spectrometry showed increased susceptibility to degradation at the domain boundary between the N- and C-terminal domains, suggesting that the domains change their relative orientation upon DNA binding. Overall, these results demonstrate that MobMN243 is capable of nicking the DNA substrate independently of its topology and that the amino acids 200 to 243 modulate substrate specificity but not the nicking activity per se. These findings suggest that these amino acids are involved in positioning the DNA for the nuclease reaction rather than in the nicking mechanism itself.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/metabolismo , Streptococcus pneumoniae/metabolismo , Proteínas Bacterianas/genética , ADN/metabolismo , ADN Superhelicoidal/metabolismo , Endodesoxirribonucleasas/genética , Plásmidos/genética , Unión Proteica
11.
J Biol Chem ; 288(17): 11907-19, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23482565

RESUMEN

Decarboxylation of malonyl-CoA to acetyl-CoA by malonyl-CoA decarboxylase (MCD; EC 4.1.1.9) is an essential facet in the regulation of fatty acid metabolism. The structure of human peroxisomal MCD reveals a molecular tetramer that is best described as a dimer of structural heterodimers, in which the two subunits present markedly different conformations. This molecular organization is consistent with half-of-the-sites reactivity. Each subunit has an all-helix N-terminal domain and a catalytic C-terminal domain with an acetyltransferase fold (GNAT superfamily). Intersubunit disulfide bridges, Cys-206-Cys-206 and Cys-243-Cys-243, can link the four subunits of the tetramer, imparting positive cooperativity to the catalytic process. The combination of a half-of-the-sites mechanism within each structural heterodimer and positive cooperativity in the tetramer produces a complex regulatory picture that is further complicated by the multiple intracellular locations of the enzyme. Transport into the peroxisome has been investigated by docking human MCD onto the peroxisomal import protein peroxin 5, which revealed interactions that extend beyond the C-terminal targeting motif.


Asunto(s)
Carboxiliasas/química , Pliegue de Proteína , Secuencias de Aminoácidos , Carboxiliasas/genética , Carboxiliasas/metabolismo , Humanos , Peroxisomas/enzimología , Peroxisomas/genética , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología
12.
Artículo en Inglés | MEDLINE | ID: mdl-23295478

RESUMEN

The first structure of a ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from a pulse crop is reported. Rubisco was purified from Pisum sativum (garden pea) and diffraction-quality crystals were obtained by hanging-drop vapour diffusion in the presence of the substrate ribulose 1,5-bisphosphate. X-ray diffraction data were recorded to 2.20 Šresolution from a single crystal at the Canadian Light Source. The overall quaternary structure of non-activated P. sativum Rubisco highlights the conservation of the form I Rubisco hexadecameric complex. The electron density places the substrate in the active site at the interface of the large-subunit dimers. Lys201 in the active site is not carbamylated as expected for this non-activated structure. Some heterogeneity in the small-subunit sequence is noted, as well as possible variations in the conformation and contacts of ribulose 1,5-bisphosphate in the large-subunit active sites. Overall, the active-site conformation most closely correlates with the `closed' conformation observed in other substrate/inhibitor-bound Rubisco structures.


Asunto(s)
Pisum sativum/enzimología , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/metabolismo , Ribulosafosfatos/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Conformación Proteica , Multimerización de Proteína , Ribulosafosfatos/química
13.
PLoS Pathog ; 6(8): e1001072, 2010 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-20865120

RESUMEN

Resistance of viruses to mutagenic agents is an important problem for the development of lethal mutagenesis as an antiviral strategy. Previous studies with RNA viruses have documented that resistance to the mutagenic nucleoside analogue ribavirin (1-ß-D-ribofuranosyl-1-H-1,2,4-triazole-3-carboxamide) is mediated by amino acid substitutions in the viral polymerase that either increase the general template copying fidelity of the enzyme or decrease the incorporation of ribavirin into RNA. Here we describe experiments that show that replication of the important picornavirus pathogen foot-and-mouth disease virus (FMDV) in the presence of increasing concentrations of ribavirin results in the sequential incorporation of three amino acid substitutions (M296I, P44S and P169S) in the viral polymerase (3D). The main biological effect of these substitutions is to attenuate the consequences of the mutagenic activity of ribavirin -by avoiding the biased repertoire of transition mutations produced by this purine analogue-and to maintain the replicative fitness of the virus which is able to escape extinction by ribavirin. This is achieved through alteration of the pairing behavior of ribavirin-triphosphate (RTP), as evidenced by in vitro polymerization assays with purified mutant 3Ds. Comparison of the three-dimensional structure of wild type and mutant polymerases suggests that the amino acid substitutions alter the position of the template RNA in the entry channel of the enzyme, thereby affecting nucleotide recognition. The results provide evidence of a new mechanism of resistance to a mutagenic nucleoside analogue which allows the virus to maintain a balance among mutation types introduced into progeny genomes during replication under strong mutagenic pressure.


Asunto(s)
Adaptación Fisiológica/genética , Antígenos Virales/genética , Farmacorresistencia Viral/genética , Virus de la Fiebre Aftosa/genética , Genes Virales/genética , Proteínas no Estructurales Virales/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Antígenos Virales/química , Antivirales/farmacología , Datos de Secuencia Molecular , Mutación , Nucleósidos , Estructura Cuaternaria de Proteína , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribavirina/farmacología , Proteínas no Estructurales Virales/química , Proteínas Virales/química , Proteínas Virales/genética , Difracción de Rayos X
14.
J Virol ; 84(12): 6188-99, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20392853

RESUMEN

Passage of poliovirus (PV) or foot-and-mouth disease virus (FMDV) in the presence of ribavirin selected for viruses with decreased sensitivity to R, which included different mutations in their polymerase (3D): G64S located in the finger subdomain in the case of PV and M296I located within loop beta9-alpha11 at the active site in the case of FMDV. To investigate why disparate substitutions were selected in two closely related 3Ds, we constructed FMDVs with a 3D that included either G62S (the equivalent replacement in FMDV of PV G64S), M296I, or both substitutions. G62S, but not M296I, inflicts upon FMDV a strong selective disadvantage which is partially compensated for by the substitution M296I. The corresponding mutant polymerases, 3D(G62S), 3D(M296I), and 3D(G62S-M296I), were analyzed functionally and structurally. G62S in 3D impairs RNA-binding, polymerization, and R monophosphate incorporation activities. The X-ray structures of the 3D(G62S)-RNA, 3D(M296I)-RNA, and 3D(G62S-M296I)-RNA complexes show that although the two positions are separated by 13.1 A, the loops where the replacements reside are tightly connected through an extensive network of interactions that reach the polymerase active site. In particular, G62S seems to restrict the flexibility of loop beta9-alpha11 and, as a consequence, the flexibility of the active site and its ability to bind the RNA template. Thus, a localized change in the finger subdomain of 3D may affect the catalytic domain. The results provide a structural interpretation of why different amino acid substitutions were selected to confer R resistance in closely related viruses and reveal a complex network of intra-3D interactions that can affect the recognition of both the RNA template and incoming nucleotide.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Inhibidores Enzimáticos/farmacología , Virus de la Fiebre Aftosa/enzimología , Mutación , Ribavirina/farmacología , Proteínas Virales/química , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Línea Celular , Cricetinae , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Fiebre Aftosa/virología , Virus de la Fiebre Aftosa/química , Virus de la Fiebre Aftosa/efectos de los fármacos , Virus de la Fiebre Aftosa/genética , Conformación Molecular , Datos de Secuencia Molecular , Unión Proteica , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/genética , Proteínas Virales/metabolismo
15.
Biochemistry ; 47(44): 11424-33, 2008 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-18844374

RESUMEN

UlaR is a DNA binding protein of the DeoR family of eubacterial transcriptional repressors which maintains the utilization of the L-ascorbate ula regulon in a repressed state. The availability of L-ascorbate in the growth medium releases UlaR-mediated repression on the ula regulon, thereby activating transcription. The molecular details of this induction by L-ascorbate have remained elusive to date. Here we have identified L-ascorbate 6-phosphate as a direct effector of UlaR; using a combination of site-directed mutagenesis, gel retardation, isothermal titration calorimetry, and analytical ultracentrifugation studies, we have identified the key amino acid residues that mediate L-ascorbate 6-phosphate binding and constructed the first model of regulation of a DeoR family member, establishing the basis of the ula regulon transcription control by UlaR. In this model, specific quaternary rearrangements of the DeoR-type repressor are the molecular underpinning of the activating and repressing forms. A DNA-bound UlaR tetramer establishes repression, whereas an L-ascorbate-6-phosphate-induced breakdown of the tetrameric configuration in favor of an UlaR dimeric state results in dissociation of UlaR from DNA and allows transcription of ulaG and ula ABCDEF structural genes. Despite the fact that similar changes have been described for other unrelated repressor factors, this is the first report to demonstrate that specific oligomerization changes are responsible for the activating and repressing forms of a DeoR-type eubacterial transcriptional repressor.


Asunto(s)
Ácido Ascórbico/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulón , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Escherichia coli/genética , Sustancias Macromoleculares , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/genética , Homología de Secuencia de Aminoácido
16.
Artículo en Inglés | MEDLINE | ID: mdl-18097099

RESUMEN

UlaG, the putative L-ascorbate-6-phosphate lactonase encoded by the ulaG gene from the utilization of L-ascorbate regulon in Escherichia coli, has been cloned, overexpressed, purified using standard chromatographic techniques and crystallized. Crystals were obtained by sitting-drop vapour diffusion at 293 K. Preliminary X-ray diffraction analysis revealed that the UlaG crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 104.52, b = 180.69, c = 112.88 A, beta = 103.26 degrees. The asymmetric unit is expected to contain six copies of UlaG, with a corresponding volume per protein weight of 2.16 A3 Da(-1) and a solvent content of 43%.


Asunto(s)
Hidrolasas de Éster Carboxílico/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Secuencia de Bases , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/aislamiento & purificación , Clonación Molecular , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Datos de Secuencia Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Difracción de Rayos X
17.
J Bacteriol ; 190(8): 2903-10, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18156270

RESUMEN

Of the nine genes comprising the L-rhamnose operon of Rhizobium leguminosarum, rhaU has not been assigned a function. The construction of a Delta rhaU strain revealed a growth phenotype that was slower than that of the wild-type strain, although the ultimate cell yields were equivalent. The transport of L-rhamnose into the cell and the rate of its phosphorylation were unaffected by the mutation. RhaU exhibits weak sequence similarity to the formerly hypothetical protein YiiL of Escherichia coli that has recently been characterized as an L-rhamnose mutarotase. To characterize RhaU further, a His-tagged variant of the protein was prepared and subjected to mass spectrometry analysis, confirming the subunit size and demonstrating its dimeric structure. After crystallization, the structure was refined to a 1.6-A resolution to reveal a dimer in the asymmetric unit with a very similar structure to that of YiiL. Soaking a RhaU crystal with L-rhamnose resulted in the appearance of beta-L-rhamnose in the active site.


Asunto(s)
Proteínas Bacterianas/metabolismo , Carbohidrato Epimerasas/metabolismo , Ramnosa/metabolismo , Rhizobium leguminosarum/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Secuencia de Bases , Sitios de Unión , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/aislamiento & purificación , Cristalografía por Rayos X , Dimerización , Proteínas de Escherichia coli/genética , Eliminación de Gen , Glicerol/metabolismo , Espectrometría de Masas , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/crecimiento & desarrollo , Homología de Secuencia de Aminoácido
18.
Proc Natl Acad Sci U S A ; 104(22): 9463-8, 2007 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-17517631

RESUMEN

RNA virus replication is an error-prone event caused by the low fidelity of viral RNA-dependent RNA polymerases. Replication fidelity can be decreased further by the use of mutagenic ribonucleoside analogs to a point where viral genetic information can no longer be maintained. For foot-and-mouth disease virus, the antiviral analogs ribavirin and 5-fluorouracil have been shown to be mutagenic, contributing to virus extinction through lethal mutagenesis. Here, we report the x-ray structure of four elongation complexes of foot-and-mouth disease virus polymerase 3D obtained in presence of natural substrates, ATP and UTP, or mutagenic nucleotides, ribavirin triphosphate and 5-fluorouridine triphosphate with different RNAs as template-primer molecules. The ability of these complexes to synthesize RNA in crystals allowed us to capture different successive replication events and to define the critical amino acids involved in (i) the recognition and positioning of the incoming nucleotide or analog; (ii) the positioning of the acceptor base of the template strand; and (iii) the positioning of the 3'-OH group of the primer nucleotide during RNA replication. The structures identify key interactions involved in viral RNA replication and provide insights into the molecular basis of the low fidelity of viral RNA polymerases.


Asunto(s)
Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/fisiología , Conformación de Ácido Nucleico , ARN Viral/biosíntesis , ARN Viral/química , Replicación Viral , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Secuencia de Bases , Catálisis , ARN Viral/genética , Uridina Trifosfato/química , Uridina Trifosfato/metabolismo
19.
J Mol Biol ; 358(3): 857-69, 2006 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-16540117

RESUMEN

TrwC is a DNA strand transferase that catalyzes the initial and final stages of conjugative DNA transfer. We have solved the crystal structure of the N-terminal relaxase domain of TrwC in complex with a 27 base-long DNA oligonucleotide that contains both the recognition hairpin and the scissile phosphate. In addition, a series of ternary structures of protein-DNA complexes with different divalent cations at the active site have been solved. Systematic anomalous difference analysis allowed us to determine unambiguously the nature of the metal bound. Zn2+, Ni2+ and Cu2+ were found to bind the histidine-triad metal binding site. Comparison of the structures of the different complexes suggests two pathways for the DNA to exit the active pocket. They are probably used at different steps of the conjugative DNA-processing reaction. The structural information allows us to propose (i) an enzyme mechanism where the scissile phosphate is polarized by the metal ion facilitating the nucleophilic attack of the catalytic tyrosine, and (ii) a probable sequence of events during conjugative DNA processing that explains the biological function of the relaxase.


Asunto(s)
ADN Nucleotidiltransferasas/química , ADN Nucleotidiltransferasas/metabolismo , ADN/química , ADN/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Sitios de Unión , Cationes Bivalentes/química , Cristalografía por Rayos X , ADN Nucleotidiltransferasas/genética , Proteínas de Escherichia coli/genética , Metales/química , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Estructura Terciaria de Proteína , Electricidad Estática , Tirosina/genética , Tirosina/metabolismo
20.
EMBO J ; 25(4): 880-8, 2006 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-16456546

RESUMEN

Picornavirus RNA replication is initiated by the covalent attachment of a UMP molecule to the hydroxyl group of a tyrosine in the terminal protein VPg. This reaction is carried out by the viral RNA-dependent RNA polymerase (3D). Here, we report the X-ray structure of two complexes between foot-and-mouth disease virus 3D, VPg1, the substrate UTP and divalent cations, in the absence and in the presence of an oligoadenylate of 10 residues. In both complexes, VPg fits the RNA binding cleft of the polymerase and projects the key residue Tyr3 into the active site of 3D. This is achieved by multiple interactions with residues of motif F and helix alpha8 of the fingers domain and helix alpha13 of the thumb domain of the polymerase. The complex obtained in the presence of the oligoadenylate showed the product of the VPg uridylylation (VPg-UMP). Two metal ions and the catalytic aspartic acids of the polymerase active site, together with the basic residues of motif F, have been identified as participating in the priming reaction.


Asunto(s)
Virus de la Fiebre Aftosa/química , Oligorribonucleótidos/química , ARN Viral/química , ARN Polimerasa Dependiente del ARN/química , Uridina Trifosfato/química , Proteínas Virales/química , Cristalografía por Rayos X , Virus de la Fiebre Aftosa/metabolismo , Oligorribonucleótidos/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN Viral/biosíntesis , ARN Polimerasa Dependiente del ARN/metabolismo , Uridina Trifosfato/metabolismo , Proteínas Virales/metabolismo , Replicación Viral/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...