Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Am J Respir Crit Care Med ; 210(5): 593-606, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38445953

RESUMEN

Rationale: Nitric oxide (NO) is increased in the airways and serum of patients with allergic asthma, suggesting an important role in asthma. NO production has been widely attributed to the canonical inducible NO synthase. Much effort has been made to inhibit this enzyme, with two outcomes: no asthma improvement and partial NO reduction, suggesting the involvement of an inducible NO synthase-independent source. Objectives: Neutrophils produce NO under inflammatory conditions, and their role in asthma has been overlooked. The present study analyzes their possible role as sources of NO. Methods: Our hypothesis was tested in 99 allergic patients with intermittent bronchial asthma and 26 healthy donors. NO production by blood and sputum neutrophils in response to allergens, anti-IgE, and anti-IgE receptor antibodies was assessed by Griess reagent, flow cytometry, and confocal microscopy. The formation of extracellular traps (ETs) as a possible consequence of NO production was quantified by Western blot and confocal microscopy, and reactive oxygen species were assessed with luminol-enhanced chemiluminescence. Measurements and Main Results: Among blood and sputum granulocytes from patients with allergic asthma, only neutrophils produce NO by an IgE-dependent mechanism. This production is independent of NO synthase, but dependent on a reaction between L-arginine and reactive oxygen species from NOX2 (NADPH oxidase). NO and ETosis are induced in parallel, and NO amplifies ET formation, which is a key mediator in asthma. Conclusions: Our findings reveal a novel role of neutrophils as the unique allergen/IgE-dependent NO source in allergic asthma, enhancing ET formation. These results suggest that NO produced by neutrophils needs further consideration in the treatment of allergic asthma.


Asunto(s)
Asma , Trampas Extracelulares , Neutrófilos , Óxido Nítrico , Humanos , Asma/inmunología , Asma/metabolismo , Óxido Nítrico/metabolismo , Neutrófilos/metabolismo , Neutrófilos/inmunología , Trampas Extracelulares/metabolismo , Trampas Extracelulares/inmunología , Femenino , Masculino , Adulto , Persona de Mediana Edad , Especies Reactivas de Oxígeno/metabolismo , Esputo/inmunología , Estudios de Casos y Controles , Citometría de Flujo , Adulto Joven
2.
Front Immunol ; 13: 1015529, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518751

RESUMEN

Background: Neutrophils are involved in the pathophysiology of allergic asthma, where the Eosinophil Cationic Protein (ECP) is a critical inflammatory mediator. Although ECP production is attributed to eosinophils, we reported that ECP is also present in neutrophils from allergic patients where, in contrast to eosinophils, it is produced in an IgE-dependent manner. Given the key role of ECP in asthma, we investigated the molecular mechanisms involved in ECP production as well as the effects induced by agonists and widely used clinical approaches. We also analyzed the correlation between ECP production and lung function. Methods: Neutrophils from allergic asthmatic patients were challenged with allergens, alone or in combination with cytokines, in the presence of cell-signaling inhibitors and clinical drugs. We analyzed ECP levels by ELISA and confocal microscopy. Lung function was assessed by spirometry. Results: IgE-mediated ECP release is dependent on phosphoinositide 3-kinase, the extracellular signal-regulated kinase (ERK1/2) and the production of reactive oxygen species by NADPH-oxidase. Calcineurin phosphatase and the transcription factor NFAT are also involved. ECP release is enhanced by the cytokines interleukin (IL)-5 and granulocyte macrophage-colony stimulating factor, and inhibited by interferon-γ, IL-10, clinical drugs (formoterol, tiotropium and budesonide) and allergen-specific IT. We also found an inverse correlation between asthma severity and ECP levels. Conclusions: Our results suggest the molecular pathways involved in ECP production and potential therapeutic targets. We also provide a new method to evaluate disease severity in asthmatic patients based on the quantification of in vitro ECP production by peripheral neutrophils.


Asunto(s)
Asma , Hipersensibilidad , Humanos , Proteína Catiónica del Eosinófilo/metabolismo , Neutrófilos/metabolismo , Fosfatidilinositol 3-Quinasas , Alérgenos , Asma/tratamiento farmacológico , Asma/metabolismo , Citocinas/metabolismo , Inmunoglobulina E
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA