Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 12(1): e0167923, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38009959

RESUMEN

IMPORTANCE: The COVID-19 pandemic has revealed the lack of effective treatments against betacoronaviruses and the urgent need for new broad-spectrum antivirals. Natural products are a valuable source of bioactive compounds with pharmaceutical potential that may lead to the discovery of new antiviral agents. Specifically, compared to conventional synthetic molecules, microbial natural extracts possess a unique and vast chemical diversity and are amenable to large-scale production. The implementation of a high-throughput screening platform using the betacoronavirus OC43 in a human cell line infection model has provided proof of concept of the approach and has allowed for the rapid and efficient evaluation of 1,280 microbial extracts. The identification of several active compounds validates the potential of the platform for the search for new compounds with antiviral capacity.


Asunto(s)
Productos Biológicos , Coronavirus Humano OC43 , Humanos , Productos Biológicos/farmacología , Productos Biológicos/metabolismo , Pandemias , Línea Celular , Antivirales/farmacología
3.
PLoS Negl Trop Dis ; 17(9): e0011592, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37713416

RESUMEN

Neglected diseases caused by kinetoplastid parasites are a health burden in tropical and subtropical countries. The need to create safe and effective medicines to improve treatment remains a priority. Microbial natural products are a source of chemical diversity that provides a valuable approach for identifying new drug candidates. We recently reported the discovery and bioassay-guided isolation of a novel family of macrolides with antiplasmodial activity. The novel family of four potent antimalarial macrolides, strasseriolides A-D, was isolated from cultures of Strasseria geniculata CF-247251, a fungal strain obtained from plant tissues. In the present study, we analyze these strasseriolides for activity against kinetoplastid protozoan parasites, namely, Trypanosoma brucei brucei, Leishmania donovani and Trypanosoma cruzi. Compounds exhibited mostly low activities against T. b. brucei, yet notable growth inhibition and selectivity were observed for strasseriolides C and D in the clinically relevant intracellular T. cruzi and L. donovani amastigotes with EC50 values in the low micromolar range. Compound C is fast-acting and active against both intracellular and trypomastigote forms of T. cruzi. While cell cycle defects were not identified, prominent morphological changes were visualized by differential interference contrast microscopy and smaller and rounded parasites were visualized upon exposure to strasseriolide C. Moreover, compound C lowers parasitaemia in vivo in acute models of infection of Chagas disease. Hence, strasseriolide C is a novel natural product active against different forms of T. cruzi in vitro and in vivo. The study provides an avenue for blocking infection of new cells, a strategy that could additionally contribute to avoid treatment failure.


Asunto(s)
Enfermedad de Chagas , Parásitos , Trypanosoma brucei brucei , Trypanosoma cruzi , Animales , Enfermedad de Chagas/tratamiento farmacológico , Macrólidos/farmacología
4.
Front Microbiol ; 14: 1149145, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234530

RESUMEN

Acanthamoeba species, Naegleria fowleri, and Balamuthia mandrillaris are opportunistic pathogens that cause a range of brain, skin, eye, and disseminated diseases in humans and animals. These pathogenic free-living amoebae (pFLA) are commonly misdiagnosed and have sub-optimal treatment regimens which contribute to the extremely high mortality rates (>90%) when they infect the central nervous system. To address the unmet medical need for effective therapeutics, we screened kinase inhibitor chemotypes against three pFLA using phenotypic drug assays involving CellTiter-Glo 2.0. Herein, we report the activity of the compounds against the trophozoite stage of each of the three amoebae, ranging from nanomolar to low micromolar potency. The most potent compounds that were identified from this screening effort were: 2d (A. castellanii EC50: 0.92 ± 0.3 µM; and N. fowleri EC50: 0.43 ± 0.13 µM), 1c and 2b (N. fowleri EC50s: <0.63 µM, and 0.3 ± 0.21 µM), and 4b and 7b (B. mandrillaris EC50s: 1.0 ± 0.12 µM, and 1.4 ± 0.17 µM, respectively). With several of these pharmacophores already possessing blood-brain barrier (BBB) permeability properties, or are predicted to penetrate the BBB, these hits present novel starting points for optimization as future treatments for pFLA-caused diseases.

5.
Pharmaceutics ; 15(2)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36839814

RESUMEN

Memnoniella is a fungal genus from which a wide range of diverse biologically active compounds have been isolated. A Memnoniella dichroa CF-080171 extract was identified to exhibit potent activity against Plasmodium falciparum 3D7 and Trypanosoma cruzi Tulahuen whole parasites in a high-throughput screening (HTS) campaign of microbial extracts from the Fundación MEDINA's collection. Bioassay-guided isolation of the active metabolites from this extract afforded eight new meroterpenoids of varying potencies, namely, memnobotrins C-E (1-3), a glycosylated isobenzofuranone (4), a tricyclic isobenzofuranone (5), a tetracyclic benzopyrane (6), a tetracyclic isobenzofuranone (7), and a pentacyclic isobenzofuranone (8). The structures of the isolated compounds were established by (+)-ESI-TOF high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy. Compounds 1, 2, and 4 exhibited potent antiparasitic activity against P. falciparum 3D7 (EC50 0.04-0.243 µM) and T. cruzi Tulahuen (EC50 0.266-1.37 µM) parasites, as well as cytotoxic activity against HepG2 tumoral liver cells (EC50 1.20-4.84 µM). The remaining compounds (3, 5-8) showed moderate or no activity against the above-mentioned parasites and cells.

6.
Antibiotics (Basel) ; 12(1)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36671310

RESUMEN

In this study, we explored a fungal strain UIAU-3F identified as Aspergillus fumigatus isolated from soil samples collected from the River Oyun in Kwara State, Nigeria. In order to explore its chemical diversity, the fungal strain UIAU-3F was cultured in three different fermentation media, which resulted in different chemical profiles, evidenced by LC-ESI-MS-based metabolomics and multivariate analysis. The methanolic extract afforded two known compounds, fumitremorgin C (1) and pseurotin D (2). The in vitro antiparasitic assays of 1 against Trypanosoma cruzi and Plasmodium falciparum showed moderate activity with IC50 values of 9.6 µM and 2.3 µM, respectively, while 2 displayed IC50 values > 50 µM. Molecular docking analysis was performed on major protein targets to better understand the potential mechanism of the antitrypanosomal and antiplasmodial activities of the two known compounds.

7.
Malar J ; 20(1): 457, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34865639

RESUMEN

BACKGROUND: Malaria is a global health problem for which novel therapeutic compounds are needed. To this end, a recently published novel family of antiplasmodial macrolides, strasseriolides A-D, was herein subjected to in vivo efficacy studies and preclinical evaluation in order to identify the most promising candidate(s) for further development. METHODS: Preclinical evaluation of strasseriolides A-D was performed by MTT-based cytotoxicity assay in THLE-2 (CRL-2706) liver cells, cardiotoxicity screening using the FluxOR™ potassium assay in hERG expressed HEK cells, LC-MS-based analysis of drug-drug interaction involving CYP3A4, CYP2D6 and CYP2C9 isoforms inhibition and metabolic stability assays in human liver microsomes. Mice in vivo toxicity studies were also accomplished by i.v. administration of the compounds (vehicle: 0.5% HPMC, 0.5% Tween 80, 0.5% Benzyl alcohol) in mice at 25 mg/kg dosage. Plasma were prepared from mice blood samples obtained at different time points (over a 24-h period), and analysed by LC-MS to quantify compounds. The most promising compounds, strasseriolides C and D, were subjected to a preliminary in vivo efficacy study in which transgenic GFP-luciferase expressing Plasmodium berghei strain ANKA-infected Swiss Webster female mice (n = 4-5) were treated 48 h post-infection with an i.p. dosage of strasseriolide C at 50 mg/kg and strasseriolide D at 22 mg/kg for four days after which luciferase activity was quantified on day 5 in an IVIS® Lumina II imager. RESULTS: Strasseriolides A-D showed no cytotoxicity, no carditoxicity and no drug-drug interaction problems in vitro with varying intrinsic clearance (CLint). Only strasseriolide B was highly toxic to mice in vivo (even at 1 mg/kg i.v. dosage) and, therefore, discontinued in further in vivo studies. Strasseriolide D showed statistically significant activity in vivo giving rise to lower parasitaemia levels (70% lower) compared to the controls treated with vehicle. CONCLUSIONS: Animal efficacy and preclinical evaluation of the recently discovered potent antiplasmodial macrolides, strasseriolides A-D, led to the identification of strasseriolide D as the most promising compound for further development. Future studies dealing on structure optimization, formulation and establishment of optimal in vivo dosage explorations of this novel compound class could enhance their clinical potency and allow for progress to later stages of the developmental pipeline.


Asunto(s)
Antimaláricos , Ascomicetos/química , Macrólidos , Malaria/tratamiento farmacológico , Plasmodium berghei/efectos de los fármacos , Animales , Antimaláricos/química , Antimaláricos/farmacología , Antimaláricos/toxicidad , Evaluación Preclínica de Medicamentos , Femenino , Macrólidos/química , Macrólidos/farmacología , Macrólidos/toxicidad , Ratones
8.
Pharmaceutics ; 13(11)2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34834257

RESUMEN

In the fight against Malaria, new strategies need to be developed to avoid resistance of the parasite to pharmaceutics and other prevention barriers. Recently, a Host Directed Therapy approach based on the suppression of the starting materials uptake from the host by the parasite has provided excellent results. In this article, we propose the synthesis of bioisosteric compounds that are capable of inhibiting Plasmodium falciparum Choline Kinase and therefore to reduce choline uptake, which is essential for the development of the parasite. Of the 41 bioisosteric compounds reported herein, none showed any influence of the linker on the antimalarial and enzyme inhibitory activity, whereas an effect of the type of cationic heads used could be observed. SARs determined that the thienopyrimidine substituted in 4 by a pyrrolidine is the best scaffold, independently of the chosen linker. The decrease in lipophilicity seems to improve the antimalarial activity but to cause an opposite effect on the inhibition of the enzyme. While potent compounds with similar good inhibitory values have been related to the proposed mechanism of action, some of them still show discrepancies and further studies are needed to determine their specific molecular target.

9.
J Med Chem ; 64(13): 9404-9430, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34156862

RESUMEN

Neglected tropical diseases such as human African trypanosomiasis (HAT) are prevalent primarily in tropical climates and among populations living in poverty. Historically, the lack of economic incentive to develop new treatments for these diseases has meant that existing therapeutics have serious shortcomings in terms of safety, efficacy, and administration, and better therapeutics are needed. We now report a series of 3,5-disubstituted-7-azaindoles identified as growth inhibitors of Trypanosoma brucei, the parasite that causes HAT, through a high-throughput screen. We describe the hit-to-lead optimization of this series and the development and preclinical investigation of 29d, a potent antitrypanosomal compound with promising pharmacokinetic (PK) parameters. This compound was ultimately not progressed beyond in vivo PK studies due to its inability to penetrate the blood-brain barrier (BBB), critical for stage 2 HAT treatments.


Asunto(s)
Indoles/farmacología , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Tripanosomiasis Africana/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Humanos , Indoles/síntesis química , Indoles/química , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad , Tripanocidas/síntesis química , Tripanocidas/química
10.
Org Lett ; 22(17): 6709-6713, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32808790

RESUMEN

A novel family of four potent antimalarial macrolides, strasseriolides A-D (1-4), has been isolated from cultures of Strasseria geniculata CF-247251, a fungal strain obtained from plant tissues. The structures of these compounds, including their absolute configurations, were elucidated by HRMS, NMR spectroscopy, and X-ray single-crystal diffraction. The four compounds gave respective IC50 values of 9.810, 0.013, 0.123, and 0.128 µM against Plasmodium falciparum 3D7 parasites with no significant cytotoxicity against the HepG2 cell line.


Asunto(s)
Antibacterianos/farmacología , Antimaláricos/farmacología , Macrólidos/farmacología , Inhibidores de la Síntesis de la Proteína/análisis , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antimaláricos/química , Antimaláricos/aislamiento & purificación , Ascomicetos , Hongos , Macrólidos/química , Macrólidos/aislamiento & purificación , Estructura Molecular , Inhibidores de la Síntesis de la Proteína/química
11.
Chem Biodivers ; 17(10): e2000335, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32697400

RESUMEN

Ten bromotyrosine alkaloids were isolated and characterised from the marine sponge Aplysinella rhax (de Laubenfels 1954) collected from the Fiji Islands, which included one new bromotyrosine analogue, psammaplin P and two other analogues, psammaplin O and 3-bromo-2-hydroxy-5-(methoxycarbonyl)benzoic acid, which have not been previously reported from natural sources. HR-ESI-MS, 1D and 2D NMR spectroscopic methods were used in the elucidation of the compounds. Bisaprasin, a biphenylic dimer of psammaplin A, showed moderate activity with IC50 at 19±5 and 29±6 µM against Trypanzoma cruzi Tulahuen C4, and the lethal human malaria species Plasmodium falciparum clone 3D7, respectively, while psammaplins A and D exhibited low activity against both parasites. This is the first report of the antimalarial and antitrypanosomal activity of the psammaplin-type compounds. Additionally, the biosynthesis hypotheses of three natural products were proposed.


Asunto(s)
Alcaloides/farmacología , Antiprotozoarios/farmacología , Productos Biológicos/farmacología , Poríferos/química , Trypanosoma cruzi/efectos de los fármacos , Tirosina/análogos & derivados , Alcaloides/química , Alcaloides/aislamiento & purificación , Animales , Antiprotozoarios/química , Antiprotozoarios/aislamiento & purificación , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/efectos de los fármacos , Tirosina/química , Tirosina/aislamiento & purificación , Tirosina/farmacología
12.
Antonie Van Leeuwenhoek ; 113(7): 875-887, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32130598

RESUMEN

Humanity faces great challenges, such as the rise of bacterial antibiotic resistance and cancer incidence. Thus, the discovery of novel therapeutics from underexplored environments, such as marine habitats, is fundamental. In this study, twelve strains from the phylum Firmicutes and thirty-four strains from the phylum Proteobacteria, isolated from marine sponges of the Erylus genus, collected in Portuguese waters, were tested for bioactivities and the secondary metabolites were characterised. Bioactivity screenings comprised antimicrobial, anti-fungal, anti-parasitic and anti-cancer assays. Selected bioactive extracts were further analysed for already described molecules through high performance liquid chromatography and mass spectrometry. Several bioactivities were observed against the fungus Aspergillusfumigatus, the bacteria (methicillin-resistant Staphylococcus aureus and Escherichia coli), the human liver cancer cell line HepG2 and the parasite Trypanosoma cruzi. Medium scale-up volume extracts confirmed anti-fungal activity by strains Proteus mirabilis #118_13 and Proteus sp. (JX006497) strain #118_20. Anti-parasitic activity was also confirmed in Enterococcus faecalis strain #118_3. Moreover, P. mirabilis #118_13 showed bioactivity in human melanoma cell line A2058 and the human hepatocellular carcinoma cell line HepG2. The dereplication of bioactive extracts showed the existence of a variety of secondary metabolites, with some unidentifiable molecules. This work shows that bacterial communities of sponges are indeed good candidates for drug discovery and, as far as we know, we describe anti-parasitic activity of a strain of E. faecalis and the presence of diketopiperazines in Proteus genus for the first time.


Asunto(s)
Bacterias/metabolismo , Dicetopiperazinas/aislamiento & purificación , Dicetopiperazinas/metabolismo , Dicetopiperazinas/farmacología , Poríferos/microbiología , Animales , Antibacterianos/aislamiento & purificación , Antifúngicos , Antineoplásicos/farmacología , Antiparasitarios/farmacología , Bacterias/clasificación , Línea Celular Tumoral , Dicetopiperazinas/química , Enterococcus faecalis/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Firmicutes/clasificación , Firmicutes/metabolismo , Hongos/efectos de los fármacos , Células Hep G2/efectos de los fármacos , Humanos , Neoplasias Hepáticas , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Simbiosis , Trypanosoma cruzi/efectos de los fármacos
13.
BMC Complement Med Ther ; 20(1): 8, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-32020891

RESUMEN

BACKGROUND: The proliferation and resistance of microorganisms area serious threat against humankind and the search for new therapeutics is needed. The present report describes the antiplasmodial and anticancer activities of samples isolated from the methanol extract of Albizia zygia (Mimosaseae). MATERIAL: The plant extract was prepared by maceration in methanol. Standard chromatographic, HPLC and spectroscopic methods were used to isolate and identify six compounds (1-6). The acetylated derivatives (7-10) were prepared by modifying 2-O-ß-D-glucopyranosyl-4-hydroxyphenylacetic acid and quercetin 3-O-α-L-rhamnopyranoside, previously isolated from A. zygia (Mimosaceae). A two-fold serial micro-dilution method was used to determine the IC50s against five tumor cell lines and Plasmodium falciparum. RESULTS: In general, compounds showed moderate activity against the human pancreatic carcinoma cell line MiaPaca-2 (10 < IC50 < 20 µM) and weak activity against other tumor cell lines such as lung (A-549), hepatocarcinoma (HepG2) and human breast adenocarcinoma (MCF-7and A2058) (IC50 > 20 µM). Additionally, the two semi-synthetic derivatives of quercetin 3-O-α-L-rhamnopyranoside exhibited significant activity against P. falciparum with IC50 of 7.47 ± 0.25 µM for compound 9 and 6.77 ± 0.25 µM for compound 10, higher than that of their natural precursor (IC50 25.1 ± 0.25 µM). CONCLUSION: The results of this study clearly suggest that, the appropriate introduction of acetyl groups into some flavonoids could lead to more useful derivatives for the development of an antiplasmodial agent.


Asunto(s)
Albizzia/química , Antimaláricos/farmacología , Citotoxinas/farmacología , Extractos Vegetales/farmacología , Antineoplásicos Fitogénicos/farmacología , Camerún , Línea Celular Tumoral , Cromatografía Liquida , Humanos , Espectrometría de Masas , Estructura Molecular , Hojas de la Planta/química , Plasmodium falciparum/efectos de los fármacos
14.
Molecules ; 25(3)2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31979050

RESUMEN

Streptomyces remains one of the prolific sources of structural diversity, and a reservoir to mine for novel natural products. Continued screening for new Streptomyces strains in our laboratory led to the isolation of Streptomyces sp. RK44 from the underexplored areas of Kintampo waterfalls, Ghana, Africa. Preliminary screening of the metabolites from this strain resulted in the characterization of a new 2-alkyl-4-hydroxymethylfuran carboxamide (AHFA) 1 together with five known compounds, cyclo-(L-Pro-Gly) 2, cyclo-(L-Pro-L-Phe) 3, cyclo-(L-Pro-L-Val) 4, cyclo-(L-Leu-Hyp) 5, and deferoxamine E 6. AHFA 1, a methylenomycin (MMF) homolog, exhibited anti-proliferative activity (EC50 = 89.6 µM) against melanoma A2058 cell lines. This activity, albeit weak is the first report amongst MMFs. Furthermore, the putative biosynthetic gene cluster (ahfa) was identified for the biosynthesis of AHFA 1. DFO-E 6 displayed potent anti-plasmodial activity (IC50 = 1.08µM) against P. falciparum 3D7. High-resolution electrospray ionization mass spectrometry (HR ESIMS) and molecular network assisted the targeted-isolation process, and tentatively identified six AHFA analogues, 7-12 and six siderophores 13-18.


Asunto(s)
Streptomyces/metabolismo , Antimaláricos/efectos adversos , Antineoplásicos/efectos adversos , Línea Celular Tumoral , Humanos , Familia de Multigenes/genética , Péptidos/efectos adversos , Péptidos/metabolismo , Transducción de Señal/efectos de los fármacos , Espectrometría de Masa por Ionización de Electrospray
15.
RSC Med Chem ; 11(8): 950-959, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33479690

RESUMEN

Human African trypanosomiasis is a neglected tropical disease (NTD) that is fatal if left untreated. Although approximately 13 million people live in moderate- to high-risk areas for infection, current treatments are plagued by problems with safety, efficacy, and emerging resistance. In an effort to fill the drug development pipeline for HAT, we have expanded previous work exploring the chemotype represented by the compound NEU-1090, with a particular focus on improvement of absorption, distribution, metabolism and elimination (ADME) properties. These efforts resulted in several compounds with substantially improved aqueous solubility, although these modifications typically resulted in a loss of trypanosomal activity. We herein report the results of our investigation into the antiparasitic activity, toxicity, and ADME properties of this class of compounds in the interest of informing the NTD drug discovery community and avoiding duplication of effort.

16.
Cell Mol Life Sci ; 77(8): 1645-1660, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31377845

RESUMEN

To maintain dNTP pool homeostasis and preserve genetic integrity of nuclear and mitochondrial genomes, the synthesis and degradation of DNA precursors must be precisely regulated. Human all-alpha dCTP pyrophosphatase 1 (DCTPP1) is a dNTP pyrophosphatase with high affinity for dCTP and 5'-modified dCTP derivatives, but its contribution to overall nucleotide metabolism is controversial. Here, we identify a central role for DCTPP1 in the homeostasis of dCTP, dTTP and dUTP. Nucleotide pools and the dUTP/dTTP ratio are severely altered in DCTPP1-deficient cells, which exhibit an accumulation of uracil in genomic DNA, the activation of the DNA damage response and both a mitochondrial and nuclear hypermutator phenotype. Notably, DNA damage can be reverted by incubation with thymidine, dUTPase overexpression or uracil-DNA glycosylase suppression. Moreover, DCTPP1-deficient cells are highly sensitive to down-regulation of nucleoside salvage. Our data indicate that DCTPP1 is crucially involved in the provision of dCMP for thymidylate biosynthesis, introducing a new player in the regulation of pyrimidine dNTP levels and the maintenance of genomic integrity.


Asunto(s)
Nucleótidos de Desoxicitosina/metabolismo , Nucleótidos de Desoxiuracil/metabolismo , Pirofosfatasas/metabolismo , Nucleótidos de Timina/metabolismo , Línea Celular , Proliferación Celular , Daño del ADN , Nucleótidos de Desoxicitosina/genética , Nucleótidos de Desoxiuracil/genética , Técnicas de Inactivación de Genes , Inestabilidad Genómica , Humanos , Células MCF-7 , Mutación , Pirofosfatasas/genética , Nucleótidos de Timina/genética
17.
J Med Chem ; 63(5): 2527-2546, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-31670951

RESUMEN

Human African trypanosomiasis (HAT) is a neglected tropical disease caused by infection with either of two subspecies of the parasite Trypanosoma brucei. Due to a lack of economic incentive to develop new drugs, current treatments have severe limitations in terms of safety, efficacy, and ease of administration. In an effort to develop new HAT therapeutics, we report the structure-activity relationships around T. brucei for a series of benzoxazepinoindazoles previously identified through a high-throughput screen of human kinase inhibitors, and the subsequent in vivo experiments for HAT. We identified compound 18, which showed an improved kinase selectivity profile and acceptable pharmacokinetic parameters, as a promising lead. Although treatment with 18 cured 60% of mice in a systemic model of HAT, the compound was unable to clear parasitemia in a CNS model of the disease. We also report the results of cross-screening these compounds against T. cruzi, L. donovani, and S. mansoni.


Asunto(s)
Indazoles/química , Indazoles/farmacología , Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Tripanosomiasis Africana/tratamiento farmacológico , Animales , Femenino , Humanos , Indazoles/farmacocinética , Ratones , Oxazepinas/química , Oxazepinas/farmacocinética , Oxazepinas/farmacología , Pruebas de Sensibilidad Parasitaria , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacocinética , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Tripanocidas/farmacocinética
18.
J Med Chem ; 63(2): 756-783, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31846577

RESUMEN

From a high-throughput screen of 42 444 known human kinases inhibitors, a pyrazolo[1,5-b]pyridazine scaffold was identified to begin optimization for the treatment of human African trypanosomiasis. Previously reported data for analogous compounds against human kinases GSK-3ß, CDK-2, and CDK-4 were leveraged to try to improve the selectivity of the series, resulting in 23a which showed selectivity for T. b. brucei over these three human enzymes. In parallel, properties known to influence the absorption, distribution, metabolism, and excretion (ADME) profile of the series were optimized resulting in 20g being progressed into an efficacy study in mice. Though 20g showed toxicity in mice, it also demonstrated CNS penetration in a PK study and significant reduction of parasitemia in four out of the six mice.


Asunto(s)
Piridazinas/síntesis química , Piridazinas/farmacología , Tripanocidas/síntesis química , Tripanocidas/farmacología , Tripanosomiasis Africana/tratamiento farmacológico , Animales , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Reposicionamiento de Medicamentos , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Leishmania donovani/efectos de los fármacos , Ratones , Modelos Moleculares , Piridazinas/farmacocinética , Ratas , Relación Estructura-Actividad , Especificidad por Sustrato , Distribución Tisular , Tripanocidas/farmacocinética , Trypanosoma brucei brucei/efectos de los fármacos , Tripanosomiasis Africana/parasitología
19.
Malar J ; 18(1): 392, 2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31796083

RESUMEN

BACKGROUND: Malaria remains as a major global problem, being one of the infectious diseases that engender highest mortality across the world. Due to the appearance of resistance and the lack of an effective vaccine, the search of novel anti-malarials is required. Deoxyuridine 5'-triphosphate nucleotido-hydrolase (dUTPase) is responsible for the hydrolysis of dUTP to dUMP within the parasite and has been proposed as an essential step in pyrimidine metabolism by providing dUMP for thymidylate biosynthesis. In this work, efforts to validate dUTPase as a drug target in Plasmodium falciparum are reported. METHODS: To investigate the role of PfdUTPase in cell survival different strategies to generate knockout mutants were used. For validation of PfdUTPase as the intracellular target of four inhibitors of the enzyme, mutants overexpressing PfdUTPase and HsdUTPase were created and the IC50 for each cell line with each compound was determined. The effect of these compounds on dUTP and dTTP levels from P. falciparum was measured using a DNA polymerase assay. Detailed localization studies by indirect immunofluorescence microscopy and live cell imaging were also performed using a cell line overexpressing a Pfdut-GFP fusion protein. RESULTS: Different attempts of disruption of the dut gene of P. falciparum were unsuccessful while a 3' replacement construct could recombine correctly in the locus suggesting that the enzyme is essential. The four 5'-tritylated deoxyuridine analogues described are potent inhibitors of the P. falciparum dUTPase and exhibit antiplasmodial activity. Overexpression of the Plasmodium and human enzymes conferred resistance against selective compounds, providing chemical validation of the target and confirming that indeed dUTPase inhibition is involved in anti-malarial activity. In addition, incubation with these inhibitors was associated with a depletion of the dTTP pool corroborating the central role of dUTPase in dTTP synthesis. PfdUTPase is mainly localized in the cytosol. CONCLUSION: These results strongly confirm the pivotal and essential role of dUTPase in pyrimidine biosynthesis of P. falciparum intraerythrocytic stages.


Asunto(s)
Antimaláricos/farmacología , Desoxiuridina/análogos & derivados , Desoxiuridina/farmacología , Plasmodium falciparum/efectos de los fármacos , Pirofosfatasas/genética , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Pirofosfatasas/metabolismo
20.
mSphere ; 4(4)2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31391279

RESUMEN

Cytidine deaminase (CDA) is a pyrimidine salvage enzyme that catalyzes cytidine and deoxycytidine hydrolytic deamination to yield uridine and deoxyuridine. Here we report the biochemical characterization of Trypanosoma brucei CDA as an enzyme within the tetrameric class of the CDA family that efficiently deaminates cytidine, deoxycytidine, and the nucleoside analogue 5-methyl-2'-deoxycytidine. In line with previous studies, we show that RNA interference (RNAi)-mediated CDA depletion impairs T. brucei proliferation when grown in pyrimidine-deficient medium, while supplementation with thymidine or deoxyuridine restores growth, further underscoring the role of this enzyme in providing deoxyuridine for dUMP formation via thymidine kinase, the substrate required for de novo thymidylate biosynthesis. This observation contrasts with the existence in T. brucei of a dimeric deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase), an essential enzyme that can produce dUMP via the hydrolysis of dUTP/dUDP. Thus, T. brucei dUTPase-null mutants are thymidine auxotrophs, suggesting that dUTPase might have a role in providing dUMP for thymidylate biosynthesis. We show that overexpression of human dCMP deaminase (DCTD), an enzyme that provides directly dUMP through dCMP deamination, does not reverse the lethal phenotype of dUTPase knockout cells, which further supports the notion that in T. brucei, CDA is uniquely involved in providing dUMP, while the main role of dUTPase would be the withdrawal of the excess of dUTP to avoid its incorporation into DNA. Furthermore, we report the mitochondrial localization of CDA, highlighting the importance of this organelle in pyrimidine metabolism.IMPORTANCE Cytidine deaminases (CDAs) catalyze the hydrolytic deamination of cytidine and deoxycytidine in the pyrimidine salvage pathway. In kinetoplastids, pyrimidine metabolism has been extensively studied as a source of potential drug targets, given the fact that many of the enzymes of the pathway are essential. Thymidylate (dTMP) synthesis in Trypanosoma brucei exhibits unique characteristics. Thus, it has been suggested that the production of dUMP, the substrate for dTMP formation, is solely dependent on cytidine deaminase and thymidine kinase. Here we characterize recombinant T. brucei CDA (TbCDA) and present evidence that indeed the alternative route for dUMP formation via deoxyuridine 5'-triphosphate nucleotidohydrolase does not have a prominent role in de novo dTMP formation. Furthermore, we provide a scheme for the compartmentalization of dTMP biosynthesis, taking into account the observation that CDA is located in the mitochondrion, together with available information on the intracellular localization of other enzymes involved in the dTTP biosynthetic pathway.


Asunto(s)
Citidina Desaminasa/metabolismo , Proteínas Protozoarias/metabolismo , Timidina Monofosfato/biosíntesis , Trypanosoma brucei brucei/enzimología , Citidina Desaminasa/genética , DCMP Desaminasa/genética , Técnicas de Silenciamiento del Gen , Humanos , Cinética , Proteínas Protozoarias/genética , Pirimidinas/metabolismo , Interferencia de ARN , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Nucleótidos de Timina/metabolismo , Trypanosoma brucei brucei/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...