Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38612895

RESUMEN

Expression of miR-21 has been found to be altered in almost all types of cancers, and it has been classified as an oncogenic microRNA. In addition, the expression of tumor suppressor gene RECK is associated with miR-21 overexpression in high-grade cervical lesions. In the present study, we analyze the role of miR-21 in RECK gene regulation in cervical cancer cells. To identify the downstream cellular target genes of upstream miR-21, we silenced endogenous miR-21 expression using siRNAs. We analyzed the expression of miR-21 and RECK, as well as functional effects on cell proliferation and migration. We found that in cervical cancer cells, there was an inverse correlation between miR-21 expression and RECK mRNA and protein expression. SiRNAs to miR-21 increased luciferase reporter activity in construct plasmids containing the RECK-3'-UTR microRNA response elements MRE21-1, MRE21-2, and MRE21-3. The role of miR-21 in cell proliferation was also analyzed, and cancer cells transfected with siRNAs exhibited a markedly reduced cell proliferation and migration. Our findings indicate that miR-21 post-transcriptionally down-regulates the expression of RECK to promote cell proliferation and cell migration inhibition in cervical cancer cell survival. Therefore, miR-21 and RECK may be potential therapeutic targets in gene therapy for cervical cancer.


Asunto(s)
MicroARNs , Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/genética , Transducción de Señal , Proliferación Celular/genética , Movimiento Celular/genética , ARN Interferente Pequeño , MicroARNs/genética , Agitación Psicomotora , ARN Bicatenario , Proteínas Ligadas a GPI/genética
2.
Int J Surg Pathol ; : 10668969231225773, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38389391

RESUMEN

INTRODUCTION: Describe factors associated with parametrial involvement, and how these factors modify the prognosis of patients with endometrial carcinoma treated with radical hysterectomy. METHODS: Observational study in which categorized patients according to those with and without parametrial involvement. A descriptive analysis and comparative analysis were performed for associations between parametrial spread and clinical, surgical, and pathology variables. RESULTS: We analyzed 85 patients, which 18 (21%) had parametrial involvement. Pathology factors associated with parametrial involvement were the endometrioid subtype, grade 3, and variants of poor prognosis (odds ratio (OR) 3.41, 95% CI 1.09-10.64; P = 0.035), myometrial invasion of over 50% (OR 7.76, 95% CI 1.65-36.44; P = 0.009), serosal involvement (OR 17.07, 95% CI 3.87-75.35; P < 0.001), ovarian metastasis (OR 5.15, 95% CI 1.36-19.46; P = 0.016), positive peritoneal cytology (OR 3.9, 95% CI 1.04-14.77; P = 0.044), and lymph node metastasis (OR 3.4; 95% CI 1.16-9.97; P = 0.026). Five-year disease-free survival was 74% (95% CI 57.4-85.4) for the group without parametrial spread and 50.8% (95% CI 22.7-73.4) for the group with parametrial spread (P = 0.001). Similarly, 5-year overall survival was 85.2% (95% CI 67.9-93.6) for the group without parametrial spread and 47.5% (95% CI 8.1-80.2) for the group with parametrial spread (P = 0.002). CONCLUSION: Factors associated with parametrial involvement were histologies of poor prognosis, tumors affecting uterine serosa, cervix, or spread beyond the uterus. Additionally, parametrial involvement directly affects prognosis by reducing overall survival, disease-free survival and increasing odds for recurrence.

3.
Cancers (Basel) ; 16(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38339324

RESUMEN

Colorectal cancer (CRC) is the third most common neoplasia in the world. Its mortality rate is high due to the lack of specific and effective treatments, metastasis, and resistance to chemotherapy, among other factors. The natural products in cancer are a primary source of bioactive molecules. In this research, we evaluated the antitumor activity of an acetogenin (ACG), laherradurin (LH), isolated from the Mexican medicinal plant Annona macroprophyllata Donn.Sm. in a CRC murine model. The CRC was induced by azoxymethane-dextran sulfate sodium (AOM/DSS) in Balb/c mice and treated for 21 days with LH or cisplatin. This study shows for the first time the antitumor activity of LH in an AOM/DSS CRC model. The acetogenin diminished the number and size of tumors compared with cisplatin; the histologic studies revealed a recovery of the colon tissue, and the blood toxicity data pointed to less damage in animals treated with LH. The TUNEL assay indicated cell death by apoptosis, and the in vitro studies exhibited that LH inhibited cell migration in HCT116 cells. Our study provides strong evidence of a possible anticancer agent for CRC.

4.
Neoplasia ; 48: 100959, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38183711

RESUMEN

Gastrointestinal Stromal Tumors (GIST) are the most frequent mesenchymal neoplasia of the digestive tract. Genomic alterations in KIT, PDFGRA, SDH, and BRAF genes are essential in GIST oncogenesis. Therefore, the mutations in these genes have demonstrated clinical implications. Tumors with deletions in KIT-exon 11 or duplications in exon 9 are associated with a worse prognosis. In contrast, KIT-exon 11 substitutions and duplications are associated with a better clinical outcome. Moreover, mutations in Kit exon 9 and 11 are actionable, due to their response to imatinib, while mutations in PDGFRA respond to sunitinib and/or avapritinib. Although, molecular testing on tissue samples is effective; it is invasive, requires adequate amounts of tissue, and a long experimental process is needed for results. In contrast, liquid biopsy has been proposed as a simple and non-invasive method to test biomarkers in cancer. The most common molecule analyzed by liquid biopsy is circulating tumor DNA (ctDNA). GISTs ctDNA testing has been demonstrated to be effective in identifying known and novel KIT mutations that were not detected using traditional tissue DNA testing and have been useful in determining progression risk and response to TKI therapy. This allows the clinician to have an accurate picture of the genetic changes of the tumor over time. In this work, we aimed to discuss the implications of mutational testing in clinical outcomes, the methods to test ctDNA and the future challenges in the establishment of alternatives of personalized medicine.


Asunto(s)
Tumores del Estroma Gastrointestinal , Humanos , Tumores del Estroma Gastrointestinal/diagnóstico , Tumores del Estroma Gastrointestinal/tratamiento farmacológico , Tumores del Estroma Gastrointestinal/genética , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Sunitinib/uso terapéutico , Pronóstico , Mutación , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/uso terapéutico , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética
5.
Curr Issues Mol Biol ; 45(12): 9549-9565, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38132443

RESUMEN

Colorectal cancer (CRC) represents the second deadliest malignancy worldwide. Around 75% of CRC patients exhibit high levels of chromosome instability that result in the accumulation of somatic copy number alterations. These alterations are associated with the amplification of oncogenes and deletion of tumor-ppressor genes and contribute to the tumoral phenotype in different malignancies. Even though this relationship is well known, much remains to be investigated regarding the effect of said alterations in long non-coding RNAs (lncRNAs) and, in turn, the impact these alterations have on the tumor phenotype. The present study aimed to evaluate the role of differentially expressed lncRNAs coded in regions with copy number alterations in colorectal cancer patient samples. We downloaded RNA-seq files of the Colorectal Adenocarcinoma Project from the The Cancer Genome Atlas (TCGA) repository (285 sequenced tumor tissues and 41 non-tumor tissues), evaluated differential expression, and mapped them over genome sequencing data with regions presenting copy number alterations. We obtained 78 differentially expressed (LFC > 1|< -1, padj < 0.05) lncRNAs, 410 miRNAs, and 5028 mRNAs and constructed a competing endogenous RNA (ceRNA) network, predicting significant lncRNA-miRNA-mRNA interactions. Said network consisted of 30 lncRNAs, 19 miRNAs, and 77 mRNAs. To understand the role that our ceRNA network played, we performed KEGG and GO analysis and found several oncogenic and anti-oncogenic processes enriched by the molecular players in our network. Finally, to evaluate the clinical relevance of the lncRNA expression, we performed survival analysis and found that C5orf64, HOTAIR, and RRN3P3 correlated with overall patient survival. Our results showed that lncRNAs coded in regions affected by SCNAs form a complex gene regulatory network in CCR.

6.
J Gastrointest Oncol ; 14(4): 1735-1745, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37720443

RESUMEN

Background: Colorectal cancer (CRC) is a leading cause of death worldwide. SRY-box transcription factor 9 (SOX9) participates in organogenesis and cell differentiation in normal tissues but has been involved in carcinogenesis development. Cancer stem cells (CSCs) are a small population of cells present in solid tumors that contribute to increased tumor heterogeneity, metastasis, chemoresistance, and relapse. CSCs have properties such as self-renewal and differentiation, which can be modulated by many factors. Currently, the role of SOX9 in the maintenance of the stem phenotype has not been well elucidated, thus, in this work we evaluated the effect of the absence of SOX9 in the stem phenotype of CRC cells. Methods: We knockout (KO) SOX9 in the undifferentiated CRC cell line HCT116 and evaluated their stemness properties using sphere formation assay, differentiation assay, and immunophenotyping. Results: SOX9-KO affected the epithelial morphology of HCT116 cells and stemness characteristics such as its pluripotency signature with the increase of SOX2 as a compensatory mechanism to induce SOX9 expression, the increase of KLF4 as a differentiation feature, as well as the inhibition of the stem cell markers CD44 and CD73. In addition, SOX9-KO cells gain the epithelial-mesenchymal transition (EMT) phenotype with a significant upregulation of CDH2. Furthermore, our results showed a remarkable effect on first- and second-sphere formation, being SOX9-KO cells less capable of forming high-size-resistant spheres. Nevertheless, CSCs surface markers were not affected during the differentiation assay. Conclusions: Collectively, our findings supply evidence that SOX9 promotes the maintenance of stemness properties in CRC-CSCs.

8.
PeerJ ; 11: e15409, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304870

RESUMEN

The postmortem interval (PMI) is the time elapsing since the death of an individual until the body is examined. Different molecules have been analyzed to better estimate the PMI with variable results. The miRNAs draw attention in the forensic field to estimate the PMI as they can better support degradation. In the present work, we analyzed the miRNome at early PMI in rats' skeletal muscle using the Affymetrix GeneChip™ miRNA 4.0 microarrays. We found 156 dysregulated miRNAs in rats' skeletal muscle at 24 h of PMI, out of which 84 were downregulated, and 72 upregulated. The miRNA most significantly downregulated was miR-139-5p (FC = -160, p = 9.97 × 10-11), while the most upregulated was rno-miR-92b-5p (FC = 241.18, p = 2.39 × 10-6). Regarding the targets of these dysregulated miRNAs, the rno-miR-125b-5p and rno-miR-138-5p were the miRNAs with more mRNA targets. The mRNA targets that we found in the present study participate in several biological processes such as interleukin secretion regulation, translation regulation, cell growth, or low oxygen response. In addition, we found a downregulation of SIRT1 mRNA and an upregulation of TGFBR2 mRNA at 24 h of PMI. These results suggest there is an active participation of miRNAs at early PMI which could be further explored to identify potential biomarkers for PMI estimation.


Asunto(s)
Medicina Legal , MicroARNs , Animales , Ratas , Autopsia , Ciclo Celular , MicroARNs/genética , ARN Mensajero/genética
9.
Cells ; 12(9)2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37174698

RESUMEN

For several decades, scientific research in cancer biology has focused mainly on the involvement of protein-coding genes [...].


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Biología
10.
Front Oncol ; 13: 1146008, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37182128

RESUMEN

Introduction: Metastatic breast cancer causes the most breast cancer-related deaths around the world, especially in countries where breast cancer is detected late into its development. Genetic testing for cancer susceptibility started with the BRCA 1 and 2 genes. Still, recent research has shown that variations in other members of the DNA damage response (DDR) are also associated with elevated cancer risk, opening new opportunities for enhanced genetic testing strategies. Methods: We sequenced BRCA1/2 and twelve other DDR genes from a Mexican-mestizo population of 40 metastatic breast cancer patients through semiconductor sequencing. Results: Overall, we found 22 variants -9 of them reported for the first time- and a strikingly high proportion of variations in ARID1A. The presence of at least one variant in the ARID1A, BRCA1, BRCA2, or FANCA genes was associated with worse progression-free survival and overall survival in our patient cohort. Discussion: Our results reflected the unique characteristics of the Mexican-mestizo population as the proportion of variants we found differed from that of other global populations. Based on these findings, we suggest routine screening for variants in ARID1A along with BRCA1/2 in breast cancer patients from the Mexican-mestizo population.

11.
Front Oncol ; 13: 1106667, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37223676

RESUMEN

Introduction: Cervical cancer is a worldwide health problem due to the number of deaths caused by this neoplasm. In particular, in 2020, 30,000 deaths of this type of tumor were reported in Latin America. Treatments used to manage patients diagnosed in the early stages have excellent results as measured by different clinical outcomes. Existing first-line treatments are not enough to avoid cancer recurrence, progression, or metastasis in locally advanced and advanced stages. Therefore, there is a need to continue with the proposal of new therapies. Drug repositioning is a strategy to explore known medicines as treatments for other diseases. In this scenario, drugs used in other pathologies that have antitumor activity, such as metformin and sodium oxamate, are analyzed. Methods: In this research, we combined the drugs metformin and sodium oxamate with doxorubicin (named triple therapy or TT) based on their mechanism of action and previous investigation of our group against three CC cell lines. Results: Through flow cytometry, Western blot, and protein microarray experiments, we found TT-induced apoptosis on HeLa, CaSki, and SiHa through the caspase 3 intrinsic pathway, including the critical proapoptotic proteins BAD, BAX, cytochrome-C, and p21. In addition, mTOR and S6K phosphorylated proteins were inhibited in the three cell lines. Also, we show an anti-migratory activity of the TT, suggesting other targets of the drug combination in the late CC stages. Discussion: These results, together with our former studies, conclude that TT inhibits the mTOR pathway leading to cell death by apoptosis. Our work provides new evidence of TT against cervical cancer as a promising antineoplastic therapy.

12.
Life (Basel) ; 13(2)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36836894

RESUMEN

Lithium is a therapeutic cation used to treat bipolar disorders but also has some important features as an anti-cancer agent. In this review, we provide a general overview of lithium, from its transport into cells, to its innovative administration forms, and based on genomic, transcriptomic, and proteomic data. Lithium formulations such as lithium acetoacetate (LiAcAc), lithium chloride (LiCl), lithium citrate (Li3C6H5O7), and lithium carbonate (Li2CO3) induce apoptosis, autophagy, and inhibition of tumor growth and also participate in the regulation of tumor proliferation, tumor invasion, and metastasis and cell cycle arrest. Moreover, lithium is synergistic with standard cancer therapies, enhancing their anti-tumor effects. In addition, lithium has a neuroprotective role in cancer patients, by improving their quality of life. Interestingly, nano-sized lithium enhances its anti-tumor activities and protects vital organs from the damage caused by lipid peroxidation during tumor development. However, these potential therapeutic activities of lithium depend on various factors, such as the nature and aggressiveness of the tumor, the type of lithium salt, and its form of administration and dosage. Since lithium has been used to treat bipolar disorder, the current study provides an overview of its role in medicine and how this has changed. This review also highlights the importance of this repurposed drug, which appears to have therapeutic cancer potential, and underlines its molecular mechanisms.

13.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36768437

RESUMEN

In 2013, recognizing that Colorectal Cancer (CRC) is the second leading cause of death by cancer worldwide and that it was a neglected disease increasing rapidly in Mexico, the community of researchers at the Biomedicine Research Unit of the Facultad de Estudios Superiores Iztacala from the Universidad Nacional Autónoma de México (UNAM) established an intramural consortium that involves a multidisciplinary group of researchers, technicians, and postgraduate students to contribute to the understanding of this pathology in Mexico. This article is about the work developed by the Mexican Colorectal Cancer Research Consortium (MEX-CCRC): how the Consortium was created, its members, and its short- and long-term goals. Moreover, it is a narrative of the accomplishments of this project. Finally, we reflect on possible strategies against CRC in Mexico and contrast all the data presented with another international strategy to prevent and treat CRC. We believe that the Consortium's characteristics must be maintained to initiate a national strategy, and the reported data could be useful to establish future collaborations with other countries in Latin America and the world.


Asunto(s)
Neoplasias Colorrectales , Estudiantes , Humanos , México , Estudios Interdisciplinarios , Terapias en Investigación , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/terapia
14.
Cells ; 11(21)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36359853

RESUMEN

Organotypic three-dimensional (3D) cell cultures more accurately mimic the characteristics of solid tumors in vivo in comparison with traditional two-dimensional (2D) monolayer cell models. Currently, studies on the regulation of long non-coding RNAs (lncRNAs) have not been explored in breast cancer cells cultured in 3D microenvironments. In the present research, we studied the expression and potential roles of lncRNAs in estrogen receptor-positive luminal B subtype BT-474 breast cancer cells grown over extracellular matrix proteins-enriched 3D cultures. Global expression profiling using DNA microarrays identifies 290 upregulated and 183 downregulated lncRNAs in 3D cultures relative to 2D condition. Using a co-expression analysis approach of lncRNAs and mRNAs pairs expressed in the same experimental conditions, we identify hundreds of regulatory axes modulating genes involved in cancer hallmarks, such as responses to estrogens, cell proliferation, hypoxia, apical junctions, and resistance to endocrine therapy. In addition, we identified 102 lncRNAs/mRNA correlations in 3D cultures, which were similar to those reported in TCGA datasets obtained from luminal B breast cancer patients. Interestingly, we also found a set of mRNAs transcripts co-expressed with LINC00847 and CTD-2566J3.1 lncRNAs, which were predictors of pathologic complete response and overall survival. Finally, both LINC00847 and CTD -2566J3.1 were co-expressed with essential genes for cancer genetic dependencies, such as FOXA1 y GINS2. Our experimental and predictive findings show that co-expressed lncRNAs/mRNAs pairs exhibit a high degree of similarity with those found in luminal B breast cancer patients, suggesting that they could be adequate pre-clinical tools to identify not only biomarkers related to endocrine therapy response and PCR, but to understand the biological behavior of cancer cells in 3D microenvironments.


Asunto(s)
Neoplasias de la Mama , ARN Largo no Codificante , Humanos , Femenino , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , Neoplasias de la Mama/patología , Regulación Neoplásica de la Expresión Génica , Oncogenes , Carcinogénesis/genética , Microambiente Tumoral/genética , Proteínas Cromosómicas no Histona/metabolismo
16.
Curr Oncol ; 29(7): 4689-4702, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35877232

RESUMEN

The most frequently diagnosed histological types of cervical cancer (CC) are squamous cell carcinoma (SCC) and adenocarcinoma (ADC). Clinically, the prognosis of both types is controversial. A molecular profile that distinguishes each histological subtype and predicts the prognosis would be of great benefit to CC patients. METHODS: The transcriptome of CC patients from The Cancer Genome Atlas (TCGA) was analyzed using the DESeq2 package to obtain the differentially expressed genes (DEGs) between ADC and SCC. The DEGs were validated on a publicly available Mexican-Mestizo patient transcriptome dataset (GSE56303). The global biological pathways involving the DEGs were obtained using the Webgestalt platform. The associations of the DEGs with Overall Survival (OS) were assessed. Finally, three DEGs were validated by RT-qPCR in an independent cohort of Mexican patients. RESULTS: The molecular profiles of ADC and SCC of the CC patients of the TCGA database and the Mexican-Mestizo cohort (GSE56303) were determined obtaining 1768 and 88 DEGs, respectively. Strikingly, 70 genes were concordant-with similar Log2FoldChange values-in both cohorts. The 70 DEGs were involved in IL-17, JAK/STAT, and Ras signaling. Kaplan-Meier OS analysis from the Mexican-Mestizo cohort showed that higher GABRB2 and TSPAN8 and lower TMEM40 expression were associated with better OS. Similar results were found in an independent Mexican cohort. CONCLUSIONS: Molecular differences were detected between the ADC and SCC subtypes; however, further studies are required to define the appropriate prognostic biomarker for each histological type.


Asunto(s)
Adenocarcinoma , Carcinoma de Células Escamosas , Neoplasias del Cuello Uterino , Adenocarcinoma/patología , Biomarcadores , Carcinoma de Células Escamosas/patología , Femenino , Humanos , Pronóstico , Tetraspaninas , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología
17.
Cells ; 11(12)2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35741024

RESUMEN

Hypoxia in cancer is a thoroughly studied phenomenon, and the logical cause of the reduction in oxygen tension is tumor growth itself. While sustained hypoxia leads to death by necrosis in cells, there is an exquisitely regulated mechanism that rescues hypoxic cells from their fatal fate. The accumulation in the cytoplasm of the transcription factor HIF-1α, which, under normoxic conditions, is marked for degradation by a group of oxygen-sensing proteins known as prolyl hydroxylases (PHDs) in association with the von Hippel-Lindau anti-oncogene (VHL) is critical for the cell, as it regulates different mechanisms through the genes it induces. A group of microRNAs whose expression is regulated by HIF, collectively called hypoxaMIRs, have been recognized. In this review, we deal with the hypoxaMIRs that have been shown to be expressed in colorectal cancer. Subsequently, using data mining, we analyze a panel of hypoxaMIRs expressed in both normal and tumor tissues obtained from TCGA. Finally, we assess the impact of these hypoxaMIRs on cancer hallmarks through their target genes.


Asunto(s)
Neoplasias Colorrectales , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau , Hipoxia de la Célula , Neoplasias Colorrectales/genética , Humanos , Hipoxia , Oxígeno/metabolismo , Factores de Transcripción/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética
18.
Cancer Lett ; 543: 215763, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35680071

RESUMEN

Feedback loops mediate signaling pathways to maintain cellular homeostasis. There are two types, positive and negative feedback loops. Both are subject to alterations, and consequently can become pathogenic in the development of diseases such as cancer. Long noncoding RNAs (lncRNAs) are regulators of signaling pathways through feedback loops hidden as the dark regulatory elements yet to be described with great impact on cancer tumorigenesis, development, and drug resistance. Several feedback loops have been studied in cancer, however, how they are regulated by lncRNAs is hardly evident, setting a trending topic in oncological research. In this review, we recapitulate and discuss the feedback loops that are regulated by lncRNAs to promote drug resistance. Furthermore, we propose additional strategies that allow us to identify, analyze and comprehend feedback loops regulated by lncRNAs to induce drug resistance or even to gain insight into novel feedback loops that are stimulated under the pressure of treatment and consequently increase its efficacy. This knowledge will be useful to optimize the therapeutic use of oncological drugs.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Resistencia a Medicamentos , Retroalimentación , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transducción de Señal
19.
Cancer Biomark ; 35(1): 47-56, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35662106

RESUMEN

BACKGROUND: Vasculogenic mimicry (VM) is characterized by formation of three-dimensional (3D) channels-like structures by tumor cells, supplying the nutrients needed for tumor growth. VM is stimulated by hypoxic tumor microenvironment, and it has been associated with increased metastasis and clinical poor outcome in cancer patients. cAMP responsive element (CRE)-binding protein 5 (CREB5) is a hypoxia-activated transcription factor involved in tumorigenesis. However, CREB5 functions in VM and if its regulated by microRNAs remains unknown in breast cancer. OBJECTIVE: We aim to study the functional relationships between VM, CREB5 and microRNA-204-5p (miR-204) in breast cancer cells. METHODS: CREB5 expression was evaluated by mining the public databases, and using RT-qPCR and Western blot assays. CREB5 expression was silenced using short-hairpin RNAs in MDA-MB-231 and MCF-7 breast cancer cells. VM formation was analyzed using matrigel-based cultures in hypoxic conditions. MiR-204 expression was restored in cancer cells by transfection of RNA mimics. Luciferase reporter assays were performed to evaluate the binding of miR-204 to 3'UTR of CREB5. RESULTS: Our data showed that CREB5 mRNA expression was upregulated in a set of breast cancer cell lines and clinical tumors, and it was positively associated with poor prognosis in lymph nodes positive and grade 3 basal breast cancer patients. Silencing of CREB5 impaired the hypoxia-induced formation of 3D channels-like structures representative of the early stages of VM in MDA-MB-231 cells. In contrast, VM formation was not observed in MCF-7 cells. Interestingly, we found that CREB5 expression was negatively regulated by miR-204 mimics in breast cancer cells. Functional analysis confirmed that miR-204 binds to CREB5 3'-UTR indicating that it's an ulterior effector. CONCLUSIONS: Our findings suggested that CREB5 could be a potential biomarker of disease progression in basal subtype of breast cancer, and that perturbations of the miR-204/CREB5 axis plays an important role in VM development in breast cancer cells.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Regiones no Traducidas 3' , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Hipoxia/genética , MicroARNs/genética , MicroARNs/metabolismo , Neovascularización Patológica/genética , Factores de Transcripción/genética , Microambiente Tumoral
20.
Cancers (Basel) ; 14(10)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35626094

RESUMEN

The 3D organotypic cultures, which depend on the growth of cells over the extracellular matrix (ECM) used as a scaffold, can better mimic several characteristics of solid cancers that influence tumor biology and the response to drug therapies. Most of our current knowledge on cancer is derived from studies in 2D cultures, which lack the ECM-mediated microenvironment. Moreover, the role of miRNAs that is critical for fine-tuning of gene expression is poorly understood in 3D cultures. The aim of this study was to compare the miRNA expression profiles of breast cancer cells grown in 2D and 3D conditions. On an on-top 3D cell culture model using a basement membrane matrix enriched with laminin, collagen IV, entactin, and heparin-sulfate proteoglycans, the basal B (Hs578T) and luminal (T47D) breast cancer cells formed 3D spheroid-like stellate and rounded mass structures, respectively. Morphological changes in 3D cultures were observed as cell stretching, cell-cell, and cell-ECM interactions associated with a loss of polarity and reorganization on bulk structures. Interestingly, we found prolongations of the cytoplasmic membrane of Hs578T cells similar to tunneled nanotubes contacting between neighboring cells, suggesting the existence of cellular intercommunication processes and the possibility of fusion between spheroids. Expression profiling data revealed that 354 miRNAs were differentially expressed in 3D relative to 2D cultures in Hs578T cells. Downregulated miRNAs may contribute to a positive regulation of genes involved in hypoxia, catabolic processes, and focal adhesion, whereas overexpressed miRNAs modulate genes involved in negative regulation of the cell cycle. Target genes of the top ten modulated miRNAs were selected to construct miRNA/mRNA coregulation networks. Around 502 interactions were identified for downregulated miRNAs, including miR-935/HIF1A and miR-5189-3p/AKT that could contribute to cell migration and the response to hypoxia. Furthermore, the expression levels of miR-935 and its target HIF1A correlated with the expression found in clinical tumors and predicted poor outcomes. On the other hand, 416 interactions were identified for overexpressed miRNAs, including miR-6780b-5p/ANKRD45 and miR-7641/CDK4 that may result in cell proliferation inhibition and cell cycle arrest in quiescent layers of 3D cultures. In conclusion, 3D cultures could represent a suitable model that better resembles the miRNA transcriptional programs operating in tumors, with implications not only in the understanding of basic cancer biology in 3D microenvironments, but also in the identification of novel biomarkers of disease and potential targets for personalized therapies in cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...