Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540681

RESUMEN

D-amino acid oxidase (DAAO) is an enzyme that catalyzes the oxidation of D-amino acids generating H2O2. The enzymatic chimera formed by DAAO bound to the choline-binding domain of N-acetylmuramoyl-L-alanine amidase (CLytA) induces cytotoxicity in several pancreatic and colorectal carcinoma and glioblastoma cell models. In the current work, we determined whether the effect of CLytA-DAAO immobilized in magnetic nanoparticles, gold nanoparticles, and alginate capsules offered some advantages as compared to the free CLytA-DAAO. Results indicate that the immobilization of CLytA-DAAO in magnetic nanoparticles increases the stability of the enzyme, extending its time of action. Besides, we compared the effect induced by CLytA-DAAO with the direct addition of hydrogen peroxide, demonstrating that the progressive generation of reactive oxygen species by CLytA-DAAO is more effective in inducing cytotoxicity than the direct addition of H2O2. Furthermore, a pilot study has been initiated in biopsies obtained from pancreatic and colorectal carcinoma and glioblastoma patients to evaluate the expression of the main genes involved in resistance to CLytA-DAAO cytotoxicity. Based on our findings, we propose that CLytA-DAAO immobilized in magnetic nanoparticles could be effective in a high percentage of patients and, therefore, be used as an anti-cancer therapy for pancreatic and colorectal carcinoma and glioblastoma.


Asunto(s)
D-Aminoácido Oxidasa/metabolismo , Nanopartículas de Magnetita/química , Neoplasias/terapia , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes de Fusión/química , Línea Celular Tumoral , Neoplasias Colorrectales/terapia , D-Aminoácido Oxidasa/uso terapéutico , Glioblastoma/terapia , Humanos , Peróxido de Hidrógeno/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias Pancreáticas/terapia , Especies Reactivas de Oxígeno/toxicidad , Neoplasias Pancreáticas
2.
Cancers (Basel) ; 12(12)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322337

RESUMEN

We have determined the effects of the IGF-1R tyrosine kinase inhibitors BMS-754807 (BMS) and OSI-906 (OSI) on cell proliferation and cell-cycle phase distribution in human colon, pancreatic carcinoma, and glioblastoma cell lines and primary cultures. IGF-1R signaling was blocked by BMS and OSI at equivalent doses, although both inhibitors exhibited differential antiproliferative effects. In all pancreatic carcinoma cell lines tested, BMS exerted a strong antiproliferative effect, whereas OSI had a minimal effect. Similar results were obtained on glioblastoma primary cultures, where HGUE-GB-15, -16 and -17 displayed resistance to OSI effects, whereas they were inhibited in their proliferation by BMS. Differential effects of BMS and OSI were also observed in colon carcinoma cell lines. Both inhibitors also showed different effects on cell cycle phase distribution, BMS induced G2/M arrest followed by cell death, while OSI induced G1 arrest with no cell death. Both inhibitors also showed different effects on other protein kinases activities. Taken together, our results are indicative that BMS mainly acts through off-target effects exerted on other protein kinases. Given that BMS exhibits a potent antiproliferative effect, we believe that this compound could be useful for the treatment of different types of tumors independently of their IGF-1R activation status.

3.
Int J Mol Sci ; 21(22)2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198289

RESUMEN

The combination of the choline binding domain of the amidase N-acetylmuramoyl-L-alanine (CLytA)-D-amino acid oxidase (DAAO) (CLytA-DAAO) and D-Alanine induces cell death in several pancreatic and colorectal carcinoma and glioblastoma cell lines. In glioblastoma cell lines, CLytA-DAAO-induced cell death was inhibited by a pan-caspase inhibitor, suggesting a classical apoptotic cell death. Meanwhile, the cell death induced in pancreatic and colon carcinoma cell lines is some type of programmed necrosis. In this article, we studied the mechanisms that trigger CLytA-DAAO-induced cell death in pancreatic and colorectal carcinoma and glioblastoma cell lines and we acquire a further insight into the necrotic cell death induced in pancreatic and colorectal carcinoma cell lines. We have analyzed the intracellular calcium mobilization, mitochondrial membrane potential, PARP-1 participation and AIF translocation. Although the mitochondrial membrane depolarization plays a crucial role, our results suggest that CLytA-DAAO-induced cell death is context dependent. We have previously detected pancreatic and colorectal carcinoma cell lines (Hs766T and HT-29, respectively) that were resistant to CLytA-DAAO-induced cell death. In this study, we have examined the putative mechanism underlying the resistance in these cell lines, evaluating both detoxification mechanisms and the inflammatory and survival responses. Overall, our results provide a better understanding on the cell death mechanism induced by CLytA-DAAO, a promising therapy against cancer.


Asunto(s)
Factor Inductor de la Apoptosis/metabolismo , Neoplasias Colorrectales/metabolismo , D-Aminoácido Oxidasa/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Neoplasias Pancreáticas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Antineoplásicos/farmacología , Apoptosis , Biopsia , Calcio/metabolismo , Muerte Celular , Línea Celular Tumoral , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células HT29 , Humanos , Inflamación , Potencial de la Membrana Mitocondrial , Subunidad p50 de NF-kappa B/metabolismo , Necrosis , Estrés Oxidativo , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo
4.
Biomolecules ; 10(2)2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-32028649

RESUMEN

D-amino acid oxidase (DAAO) catalyzes the oxidation of D-amino acids generating hydrogen peroxide, a potential producer of reactive oxygen species. In this study, we used a CLytA-DAAO chimera, both free and bound to magnetic nanoparticles, against colon carcinoma, pancreatic adenocarcinoma, and glioblastoma cell lines. We found that the enzyme induces cell death in most of the cell lines tested and its efficiency increases significantly when it is immobilized in nanoparticles. We also tested this enzyme therapy in non-tumor cells, and we found that there is not cell death induction, or it is significantly lower than in tumor cells. The mechanism triggering cell death is apparently a classical apoptosis pathway in the glioblastoma cell lines, while in colon and pancreatic carcinoma cell lines, CLytA-DAAO-induced cell death is a necrosis. Our results constitute a proof of concept that an enzymatic therapy, based on magnetic nanoparticles-delivering CLytA-DAAO, could constitute a useful therapy against cancer and besides it could be used as an enhancer of other treatments such as epigenetic therapy, radiotherapy, and treatments based on DNA repair.


Asunto(s)
Apoptosis , Colina/química , D-Aminoácido Oxidasa/química , Nanopartículas de Magnetita/química , N-Acetil Muramoil-L-Alanina Amidasa/química , Necrosis , Células 3T3-L1 , Adenocarcinoma/patología , Animales , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Supervivencia Celular , Neoplasias del Colon/patología , Daño del ADN , Reparación del ADN , Glioblastoma/patología , Humanos , Concentración 50 Inhibidora , Ratones , Neoplasias Pancreáticas/patología , Especies Reactivas de Oxígeno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...