Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Hyperthermia ; 39(1): 1371-1378, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36266247

RESUMEN

PURPOSE: To assess short-term tissue shrinkage in patients with liver malignancies undergoing computed tomography (CT)-guided microwave ablation (MWA) using Jacobian determinant (JD). MATERIALS AND METHODS: Twenty-nine patients with 29 hepatic malignancies (primary n = 24; metastases n = 5; median tumor diameter 18 mm) referred to CT-guided MWA (single position; 10 min, 100 W) were included in this retrospective IRB-approved study, after exclusion of five patients. Following segmentation of livers and tumors on pre-interventional images, segmentations were registered on post-interventional images. JD mapping was applied to quantify voxelwise tissue volume changes after MWA. Percentual volume changes were evaluated in the ablated tumor, a 5-cm tumor perimeter and in the whole liver and compared in different clinical conditions (tumor entity: primary vs. secondary; tumor location: subcapsular vs. non-subcapsular; tumor volume: >/<6 ml: cirrhosis: yes vs. no; prior chemotherapy: yes vs. no using Shapiro-Wilk, χ2 and Wilcoxon rank sum tests, respectively (with p < 0.05 deemed significant). RESULTS: Tissue volume change was 0.6% in the ablated tumor, 1.6% in the 5-cm perimeter and 0.3% in the whole liver. Shrinkage in the ablated tumor was pronounced in non-subcapsular located tumors, whereas tissue expansion was noted in subcapsular tumors (median -3.5 vs. 1.1%; p = 0.0195). Shrinkage in the whole liver was higher in tumor volumes >6ml, compared with smaller tumors, in which tissue expansion was noted (median -1.0 vs. 2.5%; p = 0.002). Other clinical conditions had no significant influence on the extent of tissue shrinkage (p > 0.05). CONCLUSION: 3D Jacobian analysis shows that hepatic tissue deformation following MWA is most pronounced in a 5-cm area surrounding the treated tumor. Tumor location and tumor volume may have an impact on the extent of tissue shrinkage which may affect estimation of the safety margin.


Asunto(s)
Ablación por Catéter , Neoplasias Hepáticas , Ablación por Radiofrecuencia , Humanos , Microondas/uso terapéutico , Estudios Retrospectivos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/cirugía , Neoplasias Hepáticas/patología , Tomografía Computarizada por Rayos X/métodos , Ablación por Catéter/métodos
2.
Pulm Circ ; 12(2): e12054, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35514781

RESUMEN

For sensitive diagnosis and monitoring of pulmonary disease, ionizing radiation-free imaging methods are of great importance. A noncontrast and free-breathing proton magnetic resonance imaging (MRI) technique for assessment of pulmonary perfusion is phase-resolved functional lung (PREFUL) MRI. Since there is no validation of PREFUL MRI across different centers and scanners, the purpose of this study was to compare perfusion-weighted PREFUL MRI with the well-established dynamic contrast-enhanced (DCE) MRI across two centers on scanners from two different vendors. Sixteen patients with cystic fibrosis (CF) (Center 1: 10 patients; Center 2: 6 patients) underwent PREFUL and DCE MRI at 1.5T in the same imaging session. Normalized perfusion-weighted values and perfusion defect percentage (QDP) values were calculated for the whole lung and three central slices (dorsal, central, ventral of the carina). Obtained parameters were compared using Pearson correlation, Spearman correlation, Bland-Altman analysis, Wilcoxon signed-rank test, and Wilcoxon rank-sum test. Moderate-to-strong correlations between normalized perfusion-weighted PREFUL and DCE values were found (posterior slice: r = 0.69, p < 0.01). Spatial overlap of PREFUL and DCE QDP maps showed an agreement of 79.4% for the whole lung. Further, spatial overlap values of Center 1 were not significantly different to those of Center 2 for the three central slices (p > 0.07). The feasibility of PREFUL MRI across two different centers and two different vendors was shown in patients with CF and obtained results were in agreement with DCE MRI.

3.
Radiol Cardiothorac Imaging ; 4(2): e210147, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35506142

RESUMEN

Purpose: To assess whether dynamic ventilation and perfusion (Q) biomarkers derived by phase-resolved functional lung (PREFUL) MRI can measure treatment response to 14-day therapy with indacaterol-glycopyrronium (IND-GLY) and correlate to clinical outcomes including lung function, symptoms, and cardiac function in patients with chronic obstructive pulmonary disease (COPD), as determined by spirometry, body plethysmography, cardiac MRI, and dyspnea score measurements. Materials and Methods: The cardiac left ventricular function in COPD (CLAIM) study enrolled patients aged 40 years or older with COPD, stable cardiovascular function, and hyperinflation (residual volume > 135% predicted). Dynamic MRI data of these patients were retrospectively analyzed using the PREFUL technique to assess the effect of 14-day IND-GLY treatment versus placebo on regional measurements of ventilation dynamics. After manual segmentation of the lung parenchyma, flow-volume loops of each voxel were correlated to an individualized reference flow-volume loop, creating a two-dimensional flow-volume loop correlation map (FVL-CM) as a measure of ventilation dynamics. Ventilation-perfusion match (VQM) was evaluated in combination with perfusion and regional ventilation (VQMRVent) and with perfusion and the FVL-CM measurement (VQMCM). For image and statistical analysis, the lung parenchyma was segmented as a region of interest by manually delineating the lung boundary and excluding the large (central) vessels for each section. Differences in ventilation, perfusion, and VQM between IND-GLY and placebo were compared using analysis of variance, with study treatment, patient, and period included as factors. Results: Fifty patients (mean age, 64.3 years ± 7.65 [SD]; 35 men) were included in this analysis. IND-GLY significantly increased mean correlation as measured with FVL-CM versus that of placebo (least squares [LS] means treatment difference: 0.05 [95% CI: 0.03, 0.07]; P < .0001). Compared with placebo, IND-GLY increased mean Q (LS means treatment difference: 9.27 mL/min/100 mL [95% CI: 0.05, 18.49]; P = .049) and improved both VQMCM and VQMRVent (LS means treatment difference: 0.06 [95% CI: 0.03, 0.08]; P < .0001 and 0.05 [95% CI: 0.02, 0.08]; P = .001, respectively). Conclusion: Regional ventilation dynamics and VQM measured by PREFUL MRI show treatment response in COPD. Supplemental material is available for this article. Clinical trial registration no. NTR6831Keywords: MRI, COPD, Perfusion, Ventilation, Lung, PulmonaryPublished under a CC BY 4.0 license.

4.
Innov Surg Sci ; 6(3): 105-113, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35224178

RESUMEN

OBJECTIVES: This study aimed to examine the alterations in magnetic resonance imaging (MRI) characteristics of bioabsorbable magnesium (Mg) screws over time in a single center study in humans. METHODS: Seventeen patients who underwent medial malleolar (MM) fracture or osteotomy fixation using bioabsorbable Mg screws and had at least one postoperative MRI were included in this retrospective study. Six of them had more than one MRI in the postoperative period and were subject of the artifact reduction measurements. 1.5T or 3T MRI scans were acquired in different periods in each patient. The size and extent of the artifact were assessed independently by two experienced radiologists both quantitatively (distance measurement) and qualitatively (Likert scale). RESULTS: In the quantitative measurements of the six follow-up patients the screw's signal loss artifact extent significantly decreased over the time, regardless of the MRI field strength (p<0.001). The mean artifact reduction was 0.06 mm (95% confidence interval [CI]: 0.05-0.07) for proton density weighted [PDw] and 0.04 mm (95% CI: 0.03-0.05) for T1 weighted (T1w) sequences per week. The qualitative assessments similarly showed significant artifact reduction in all MRI sequences. Different imaging findings, like bone marrow edema (BME), liquid collections, and gas formation were reported. The overall inter-reader agreement was high (κ=0.88, p<0.001). CONCLUSIONS: The time-dependent artifact reduction of Mg screws in postoperative controls might indicate the expected self-degradation of the Mg implants. In addition, different MRI findings were reported, which are characteristic of Mg implants. Further MRI studies are required to get a better understanding of Mg imaging properties.

5.
J Magn Reson Imaging ; 56(2): 605-615, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34870363

RESUMEN

BACKGROUND: Phase-resolved functional lung (PREFUL) magnetic resonance imaging (MRI) pulmonary pulse wave transit time (pPTT) is a contrast agent free, vascular imaging biomarker, but has not been validated in chronic obstructive pulmonary disease (COPD). PURPOSE: To validate PREFUL with echocardiographic pPTT as a reference standard and to compare arterial/venous pPTT mapping with spirometry and clinical parameters. STUDY TYPE: Prospective. POPULATION: Twenty-one patients (62% female) with COPD and 44 healthy participants (50% female). FIELD STRENGTH/SEQUENCE: 1.5 T; 2D-spoiled gradient-echo sequence. ASSESSMENT: Three coronal PREFUL MRI slices, echocardiography, and spirometry including forced expiratory volume in 1 second (FEV1, liter) and predicted defined as FEV1 in% divided by the population average FEV1%, were performed. Pulmonary pulse transit time from the main artery to the microvasculature (PREFUL pPTT), to the right upper lobe vein (PREFUL pPTTav , echo pPTTav ), from microvasculature to right upper lobe vein (PREFULvein ) and the ratio of PREFUL pPTT to PREFUL pPTTvein were calculated. Body mass index (BMI), Global Initiative for COPD (GOLD) stage 1-4, disease duration, and cigarette packs smoked per day multiplied by the smoked years (pack years) were computed. STATISTICAL TESTS: Shapiro-Wilk-test, paired-two-sided-t-tests, Bland-Altman-analysis, coefficient of variation, Pearson ρ were applied, pPTT data were compared between 21 subjects from the 44 healthy subjects who were age- and sex-matched to the COPD cohort, P < 0.05 was considered statistically significant. RESULTS: PREFUL pPTTav significantly correlated with echo pPTTav (ρ = 0.95) with 1.85 msec bias, 95% limits of agreement: 55.94 msec, -52.23 msec in all participants (P = 0.59). In the healthy participants, PREFUL and echo pPTTav significantly correlated with age (ρ = 0.81, ρ = 0.78), FEV1 (ρ = -0.47, ρ = -0.34) and BMI (ρ = 0.56, ρ = 0.51). In COPD patients, PREFUL pPTT significantly correlated with FEV1 predicted (ρ = -0.59), GOLD (ρ = 0.53), disease duration (ρ = 0.54), and pack years (ρ = 0.49). DATA CONCLUSION: Arteriovenous PTT measured by PREFUL MRI corresponds precisely to echocardiography and appears to be feasible even in severe COPD. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Pulmón , Enfermedad Pulmonar Obstructiva Crónica , Ecocardiografía/métodos , Femenino , Humanos , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Masculino , Estudios Prospectivos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Análisis de la Onda del Pulso
6.
PLoS One ; 16(8): e0255616, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34375344

RESUMEN

PURPOSE: High resolution flat-panel computed tomography arthrography (FPCT-A) and magnetic resonance arthrography (MR-A) are well suited to evaluate osteochondral lesions. The current study compares the performance of FPCT-A versus MR-A in an experimental setting. METHODS: Fourteen cadaveric ankles were prepared with artificial osteochondral defects of various sizes in four separate talar locations. After intra-articular contrast injection, FPCT-A and 3-T MR-A were acquired. Each defect was then filled with synthetic pallets. The resulting cast was used as reference. Two independent radiologists measured the dimensions of all defects with FPCT-A and MR-A. Intra-class correlation coefficients (ICC) were calculated. Data were compared using t-tests and Bland-Altman plots. RESULTS: The correlation for FPCT-A and cast was higher compared to MR-A and cast (ICC 0.876 vs. 0.799 for surface [length x width]; ICC 0.887 vs. 0.866 for depth, p<0.001). Mean differences between FPCT-A and cast measurements were -1.1 mm for length (p<0.001), -0.7 mm for width (p<0.001) and -0.4 mm for depth (p = 0.023). By MR-A, there were no significant differences for length and width compared to cast (p>0.05). Depth measurements were significantly smaller by MR-A (mean difference -1.1 mm, p<0.001). There was no bias between the different modalities. CONCLUSIONS: Ex vivo FPCT-A and MR-A both deliver high diagnostic accuracy for the evaluation of osteochondral defects. FPCT-A was slightly more accurate than MR-A, which was most significant when measuring lesion depth.


Asunto(s)
Articulación del Tobillo/patología , Artrografía/métodos , Fracturas Intraarticulares/diagnóstico , Imagen por Resonancia Magnética/métodos , Tomografía Computarizada por Rayos X/métodos , Articulación del Tobillo/diagnóstico por imagen , Cadáver , Humanos , Procesamiento de Imagen Asistido por Computador , Reproducibilidad de los Resultados
7.
J Magn Reson Imaging ; 54(2): 618-629, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33565215

RESUMEN

BACKGROUND: A previous study has demonstrated the feasibility of 3D phase-resolved functional lung (PREFUL) MRI in healthy volunteers and patients with chronic pulmonary disease. Before clinical use, the repeatability of the ventilation parameters derived from 3D PREFUL MRI must be determined. PURPOSE: To evaluate repeatability of 3D PREFUL and to compare with pulmonary functional lung testing (PFT). STUDY TYPE: Prospective. POPULATION: Fifty-three healthy subjects and 13 patients with chronic obstructive pulmonary disease (COPD). FIELD STRENGTH/SEQUENCE: A prototype 3D stack-of-stars spoiled-gradient-echo sequence at 1.5 T. ASSESSMENT: Study participants underwent repeated MRI examination (median time interval between scans COPD/healthy subjects [interquartile range]: 7/0 days [6-8/0-0 days]) and one PFT carried out at the time of the baseline MRI. For 3D PREFUL, regional ventilation (RVent) and flow-volume loops were computed and rated by cross-correlation (CC). Also, ventilation time-to-peak (VTTP) was computed. Ventilation defect percentage (VDP) maps were obtained for RVent and CC. STATISTICAL TESTS: Repeatability of 3D PREFUL parameters was evaluated using Bland-Altman analysis, coefficient of variation (COV) and intraclass correlation coefficient (ICC). The relation between 3D PREFUL and PFT measures (forced expiratory volume in 1 second (FEV1 ) and forced vital capacity (FVC) was assessed using the Pearson correlation coefficient (r). RESULTS: In healthy subjects and COPD patients, no significant bias (all P range: 0.09-0.77) and a moderate to good repeatability of RVent, VTTP, and VDPRVent were found (COV range: 0.1%-18.2%, ICC range: 0.51-0.88). For CC and VDPCC moderate repeatability was found (COV range: 0.6%-43.6%, ICC: 0.38-0.60). CC, VDPRVent , and VDPCC showed a good correlation with FEV1 (all |r| > 0.58, all P < 0.05) and FEV1 /FVC ratio (all |r| > 0.62, all P < 0.05). DATA CONCLUSION: 3D PREFUL provided a good repeatability of RVent, VTTP, and VDPRVent and moderate repeatability of CC and VDPCC in healthy volunteers and COPD patients, and correlated well with FEV1 and FEV1 /FVC. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Voluntarios Sanos , Humanos , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética , Estudios Prospectivos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Estudios Retrospectivos
8.
J Magn Reson Imaging ; 53(3): 915-927, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33058351

RESUMEN

BACKGROUND: Free-breathing phase-resolved functional lung (PREFUL)-MRI may be useful for treatment monitoring in chronic obstructive pulmonary disease (COPD) patients with dyspnea. PREFUL test-retest reliability is essential for clinical application. PURPOSE: To measure the repeatability of PREFUL-MRI ventilation (V) and perfusion (Q) parameters. STUDY TYPE: Retrospective and prospective. POPULATION: A total of 28 COPD patients and 57 healthy subjects. FIELD STRENGTH/SEQUENCE: 1.5T MRI/2D spoiled gradient echo imaging. ASSESSMENT: V and Q lung parameter maps based on three coronal slices were obtained at baseline and after 14 days (COPD patients) or after a short pause outside the scanner (healthy subjects). Regional ventilation (RVent) and imaging flow volume loops by cross-correlation (ccVent) were quantified. Q was normalized to the signal of the main pulmonary artery (QN ) and quantified (QQuant ). Pulmonary pulse wave transit time (pPTT), voxel-by-voxel (regional), and whole lung (global) ventilation defect percentage based on RVent (VDPRVent ) and ccVent (VDPccVent ), perfusion defect percentage (QDP), and ventilation/perfusion match based on RVent (VQMRVent ) and ccVent (VQMccVent ) were calculated. STATISTICAL TESTS: Regional V and Q were analyzed globally for each subject. Each parameter's median of scans 1 and 2 were assessed by Wilcoxon sign rank test. A parameter's repeatability was analyzed by Bland-Altman analyses, coefficients of variation, intraclass correlation coefficients (ICC), and power calculations. The regional voxel repeatability was examined by calculating the Sørensen-Dice coefficient. RESULTS: There was no bias and no significant differences between the first and second MRI for any parameters (P > 0.05). Coefficient of variation ranged from 2.26% (ccVent) to 19.31% (QDP), ICC from 0.93 (QDP) to 0.60 (pPTT), the smallest detectable difference was 0.002 ccVent. Regional comparison showed the highest overlap (84%) in VDPRVent in healthy voxels and the lowest (53%) in VDPccVent defect voxels. DATA CONCLUSION: V and Q PREFUL-MRI parameters were repeatable over two scan sessions in both healthy controls and COPD patients. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.


Asunto(s)
Pulmón , Enfermedad Pulmonar Obstructiva Crónica , Voluntarios Sanos , Humanos , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética , Perfusión , Estudios Prospectivos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Reproducibilidad de los Resultados , Estudios Retrospectivos
9.
J Magn Reson Imaging ; 53(4): 1092-1105, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33247456

RESUMEN

BACKGROUND: Regional flow volume loop ventilation-weighted noncontrast-enhanced proton lung MRI in free breathing has emerged as a novel technique for assessment of regional lung ventilation, but has yet not been validated with 129 Xenon MRI (129 Xe-MRI), a direct visualization of ventilation in healthy volunteers, cystic fibrosis (CF), and chronic obstructive pulmonary disease (COPD) patients. PURPOSE: To compare regional ventilation and regional flow volume loops measured by noncontrast-enhanced ventilation-weighted phase-resolved functional lung MRI (PREFUL-MRI) with 129 Xe-MRI ventilation imaging and with lung function test parameters. STUDY TYPE: Retrospective study. POPULATION: Twenty patients with COPD, eight patients with CF, and six healthy volunteers. FIELD STRENGTH/SEQUENCE: PREFUL and 129 Xe-MRI gradient echo sequences were acquired at 1.5T. ASSESSMENT: Coronal slices of PREFUL-MRI (free breathing) and 129 Xe-MRI (single breath-hold) were acquired on the same day, matched by their ventrodorsal position and coregistered for evaluation. Ventilation defect percentage (VDP) was calculated based on regional ventilation (RV), regional flow volume loops (RFVL), or 129 Xe-MRI with two different threshold methods. A combined VDP was calculated for RV and RFVL. Additionally, lung function testing was performed (such as the forced expiratory volume in 1 second [FEV1 ]) was used. STATISTICAL TESTS: The obtained parameters were compared using Wilcoxon tests, correlated using Spearman's correlation coefficient (r), and agreement between PREFUL and 129 Xe-MRI parameters was assessed using Bland-Altman analysis and Dice coefficients. RESULTS: VDP measured by PREFUL and 129 Xe were significantly correlated with both thresholding techniques (r = 0.62-0.69, P < 0.05 for all) and with lung function test parameters. Combined RV and RFVL PREFUL defect maps correlated with lung function testing (eg, with FEV1 r = -0.87 P < 0.05), and showed better regional agreement to 129 Xe-MRI ventilation defects (Dice coefficient defect 0.413) with significantly higher VDP values (10.2 ± 27.3, P = 0.04) than either PREFUL defect map alone. DATA CONCLUSION: Combined RV and RFVL PREFUL defect maps likely increase sensitivity to mild airway obstruction with increased VDP values compared to 129 Xe-MRI, and correlate strongly with lung function test parameters. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 2.


Asunto(s)
Pulmón , Xenón , Humanos , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética , Pruebas de Función Respiratoria , Estudios Retrospectivos , Isótopos de Xenón
10.
PLoS One ; 15(9): e0238171, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32925924

RESUMEN

Magnetic resonance imaging (MRI) is an emerging tool for diagnosis and treatment monitoring of chronic thromboembolic pulmonary hypertension (CTEPH). The current study aims to identify central pulmonary arterial hemodynamic parameters that reflect clinical, cardiac and pulmonary changes after PEA. 31 CTEPH patients, who underwent PEA and received pre- and postoperative MRI, were analyzed retrospectively. Central pulmonary arterial blood flow, lung perfusion and right heart function data were derived from MRI. Mean pulmonary arterial pressure (mPAP) and 5-month follow-up six-minute walk-distance (6MWD) were assessed. After PEA, mPAP decreased significantly and patients achieved a higher 6MWD. Central pulmonary arterial blood flow velocities, pulmonary blood flow (PBF) and right ventricular function increased significantly. Two-dimensional (2D) phase-contrast (PC) MRI-derived average mean velocity, maximum mean velocity and deceleration volume changes after PEA correlated with changes of 6MWD and right heart ejection fraction (RVEF). Deceleration volume is a novel 2D PC MRI parameter showing further correlation with PBF changes. In conclusion, 2D PC MRI-derived main pulmonary hemodynamic changes reflect changes of RVEF, PBF and 5-month follow-up 6MWD and may be used for future CTEPH patient monitoring after PEA.


Asunto(s)
Circulación Coronaria , Endarterectomía , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/cirugía , Imagen por Resonancia Magnética , Circulación Pulmonar , Trombosis/complicaciones , Anciano , Enfermedad Crónica , Femenino , Humanos , Hipertensión Pulmonar/complicaciones , Hipertensión Pulmonar/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Periodo Perioperatorio , Estudios Retrospectivos
11.
Int J Hyperthermia ; 37(1): 533-541, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32468872

RESUMEN

Purpose: The aims of this study were to evaluate a semi-automatic segmentation software for assessment of ablation zone geometry in computed tomography (CT)-guided microwave ablation (MWA) of liver tumors and to compare two different MWA systems.Material and Methods: 27 patients with 40 hepatic tumors (primary liver tumor n = 20, metastases n = 20) referred for CT-guided MWA were included in this retrospective IRB-approved study. MWA was performed using two systems (system 1: 915 MHz; n = 20; system 2: 2.45 GHz; n = 20). Ablation zone segmentation and ellipticity index calculations were performed using SAFIR (Software Assistant for Interventional Radiology). To validate semi-automatic software calculations, results (2 perpendicular diameters, ellipticity index, volume) were compared with those of manual analysis (intraclass correlation, Pearson's correlation, Mann-Whitney U test; p < 0.05 deemed significant.Results: Manual measurements of mean maximum ablation zone diameters were 43 mm (system 1) and 34 mm (system 2), respectively. Correlations between manual and semi-automatic measurements were r = 0.72 and r = 0.66 (both p < 0.0001) for perpendicular diameters, and r = 0.98 (p < 0.001) for volume. Manual analysis demonstrated that ablation zones created with system 2 had a significantly lower ellipticity index compared to system 1 (mean 1.17 vs. 1.86, p < 0.0001). Results correlated significantly with semi-automatic software measurements (r = 0.71, p < 0.0001).Conclusion: Semi-automatic assessment of ablation zone geometry using SAFIR is feasible. Software-assisted evaluation of ablation zones may prove beneficial with complex ablation procedures, especially for less experienced operators. The 2.45 GHz MWA system generated a significantly more spherical ablation zone compared to the 915 MHz system. The choice of a specific MWA system significantly influences ablation zone geometry.


Asunto(s)
Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/terapia , Ablación por Radiofrecuencia/métodos , Tomografía Computarizada por Rayos X/métodos , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Programas Informáticos , Adulto Joven
12.
J Magn Reson Imaging ; 52(2): 610-619, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32096280

RESUMEN

BACKGROUND: The translation of phase-resolved functional lung (PREFUL)-MRI to routine practice in monitoring chronic thromboembolic pulmonary hypertension (CTEPH) still requires clinical corresponding imaging biomarkers of pulmonary vascular disease. PURPOSE: To evaluate successful pulmonary endarterectomy (PEA) via PREFUL-MRI with pulmonary pulse wave transit time (pPTT). STUDY TYPE: Retrospective. POPULATION: Thirty CTEPH patients and 12 healthy controls were included. FIELD STRENGTH/SEQUENCE: For PREFUL-MRI a 2D spoiled gradient echo sequence and for DCE-MRI a 3D time-resolved angiography with stochastic trajectories (TWIST) sequence were performed on 1.5T. ASSESSMENT: Eight coronal slices of PREFUL-MRI were obtained on consecutive 13 days before and 14 days after PEA. PREFUL quantitative lung perfusion (PREFULQ ) phases over the whole cardiac cycle were calculated to quantify pPTT, the time the pulmonary pulse wave travels from the central pulmonary arteries to the pulmonary capillaries. Also, perfusion defect percentage based on pPTT (QDPpPTT ), PREFULQ (QDPPREFUL ), and V/Q match were calculated. For DCE-MRI, pulmonary blood flow (PBF) and QDPPBF were computed as reference. For clinical correlation, mean pulmonary arterial pressure (mPAP) and 6-minute walking distance were evaluated preoperatively and after PEA. STATISTICAL TESTS: The Shapiro-Wilk test, paired two-sided Wilcoxon rank sum test, Dice coefficient, and Spearman's correlation coefficient (ρ) were applied. RESULTS: Median pPTT was significantly lower post PEA (139 msec) compared to pre PEA (193 msec), P = 0.0002. Median pPTT correlated significantly with the mPAP post PEA (r = 0.52, P < 0.008). Median pPTT was distributed more homogeneously after PEA: IQR pPTT decreased from 336 to 281 msec (P < 0.004). Median PREFULQ (P < 0.0002), QDPpPTT (P < 0.0478), QDPPREFUL (P < 0.0001) and V/Q match (P < 0.0001) improved significantly after PEA. Percentage change of PREFULQ correlated significantly with percentage change of 6-minute walking distance (ρ = 0.61; P = 0.0031) 5 months post PEA. DATA CONCLUSION: Perioperative perfusion changes in CTEPH can be detected and quantified by PREFUL-MRI. Normalization of pPTT reflects surgical success and improvement of PREFULQ predicts 6-minute walking distance changes. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 2 J. Magn. Reson. Imaging 2020;52:610-619.


Asunto(s)
Hipertensión Pulmonar , Embolia Pulmonar , Enfermedad Crónica , Endarterectomía , Humanos , Hipertensión Pulmonar/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Pulmón/cirugía , Imagen por Resonancia Magnética , Arteria Pulmonar/diagnóstico por imagen , Arteria Pulmonar/cirugía , Embolia Pulmonar/diagnóstico por imagen , Estudios Retrospectivos
13.
J Magn Reson Imaging ; 52(1): 103-114, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31872556

RESUMEN

BACKGROUND: Perfusion-weighted (Qw) noncontrast-enhanced proton lung MRI is a promising technique for assessment of pulmonary perfusion, but still requires validation. PURPOSE: To improve perfusion-weighted phase-resolved functional lung (PREFUL)-MRI, to validate PREFUL with perfusion single photon emission computed tomography (SPECT) as a gold standard, and to compare PREFUL with dynamic contrast-enhanced (DCE)-MRI as a reference. STUDY TYPE: Retrospective. POPULATION: Twenty patients with chronic obstructive pulmonary disease (COPD), 14 patients with cystic fibrosis (CF), and 21 patients with chronic thromboembolic pulmonary hypertension (CTEPH) were included. FIELD STRENGTH/SEQUENCE: For PREFUL-MRI, a spoiled gradient echo sequence and for DCE-MRI a 3D time-resolved angiography with stochastic trajectories sequence were used at 1.5T. ASSESSMENT: PREFUL-MRI coronal slices were acquired in free-breathing. DCE-MRI was performed in breath-hold with injection of 0.03 mmol/kg bodyweight of gadoteric acid at a rate of 4 cc/s. Perfusion SPECT images were obtained for six CTEPH patients. Images were coregistered. An algorithm to define the appropriate PREFUL perfusion phase was developed using perfusion SPECT data. Perfusion defect percentages (QDP) and Qw-values were calculated for all methods. For PREFUL quantitative perfusion values (PREFULQ ) and for DCE pulmonary blood flow (PBF) was calculated. STATISTICAL TESTS: Obtained parameters were assessed using Pearson correlation and Bland-Altman analysis. RESULTS: Qw-SPECT correlated with Qw-DCE (r = 0.50, P < 0.01) and Qw-PREFUL (r = 0.47, P < 0.01). Spatial overlap of QDP maps showed an agreement ≥67.7% comparing SPECT and DCE, ≥64.1% for SPECT and PREFUL, and ≥60.2% comparing DCE and PREFUL. Significant correlations of Qw-PREFUL and Qw-DCE were found (COPD: r = 0.79, P < 0.01; CF: r = 0.77, P < 0.01; CTEPH: r = 0.73, P < 0.01). PREFULQ /PBF correlations were similar/lower (CF, CTEPH: P > 0.12; COPD: P < 0.01) compared to Qw-PREFUL/DCE correlations. PREFULQ -values were higher/similar compared to PBF-values (COPD, CF: P < 0.01; CTEPH: P = 0.026). DATA CONCLUSION: The automated PREFUL algorithm may allow for noncontrast-enhanced pulmonary perfusion assessment in COPD, CF, and CTEPH patients comparable to DCE-MRI. Level of Evidence 3 Technical Efficacy Stage 2 J. Magn. Reson. Imaging 2020;52:103-114.


Asunto(s)
Pulmón , Angiografía por Resonancia Magnética , Medios de Contraste , Humanos , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética , Perfusión , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...