Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 107, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013237

RESUMEN

Aging is impacted by interventions across species, often converging on metabolic pathways. Transcription factors regulate longevity yet approaches for their pharmacological modulation to exert geroprotection remain sparse. We show that increased expression of the transcription factor Grainyhead 1 (GRH-1) promotes lifespan and pathogen resistance in Caenorhabditis elegans. A compound screen identifies FDA-approved drugs able to activate human GRHL1 and promote nematodal GRH-1-dependent longevity. GRHL1 activity is regulated by post-translational lysine methylation and the phosphoinositide (PI) 3-kinase C2A. Consistently, nematodal longevity following impairment of the PI 3-kinase or insulin/IGF-1 receptor requires grh-1. In BXD mice, Grhl1 expression is positively correlated with lifespan and insulin sensitivity. In humans, GRHL1 expression positively correlates with insulin receptor signaling and also with lifespan. Fasting blood glucose levels, including in individuals with type 2 diabetes, are negatively correlated with GRHL1 expression. Thereby, GRH-1/GRHL1 is identified as a pharmacologically malleable transcription factor impacting insulin signaling and lifespan.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Fosfatidilinositol 3-Quinasas Clase II/genética , Diabetes Mellitus Tipo 2/genética , Factor I del Crecimiento Similar a la Insulina/genética , Insulina/metabolismo , Longevidad/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Animales , Animales Modificados Genéticamente , Glucemia/metabolismo , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Fosfatidilinositol 3-Quinasas Clase II/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Regulación de la Expresión Génica , Humanos , Resistencia a la Insulina , Factor I del Crecimiento Similar a la Insulina/metabolismo , Longevidad/efectos de los fármacos , Metilación , Ratones , Papaverina/farmacología , Proteínas Represoras/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Vorinostat/farmacología
2.
3.
Nat Commun ; 11(1): 2080, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32350271

RESUMEN

Excessive insulin signaling through the insulin receptor (IR) may play a role in the pathogenesis of diet-induced metabolic disease, including obesity and type 2 diabetes. Here we investigate whether heterozygous impairment of insulin receptor (IR) expression limited to peripheral, i.e. non-CNS, tissues of adult mice impacts the development of high-fat diet-induced metabolic deterioration. While exhibiting some features of insulin resistance, PerIRKO+/- mice display a hepatic energy deficit accompanied by induction of energy-sensing AMPK, mitochondrial biogenesis, PPARα, unexpectedly leading to protection from, and reversal of hepatic lipid accumulation (steatosis hepatis, NAFLD). Consistently, and unlike in control mice, the PPARα activator fenofibrate fails to further affect hepatic lipid accumulation in PerIRKO+/- mice. Taken together, and opposing previously established diabetogenic features of insulin resistance, incomplete impairment of insulin signaling may mimic central aspects of calorie restriction to limit hepatic lipid accumulation during conditions of metabolic stress.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Ayuno/metabolismo , Hígado Graso/etiología , Hígado Graso/prevención & control , Receptor de Insulina/metabolismo , Animales , Composición Corporal , Metabolismo Energético , Conducta Alimentaria , Glucosa/metabolismo , Homeostasis , Resistencia a la Insulina , Hígado/metabolismo , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados
4.
Aging Cell ; 16(4): 761-772, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28544360

RESUMEN

Impaired insulin/IGF1 signalling has been shown to extend lifespan in model organisms ranging from yeast to mammals. Here we sought to determine the effect of targeted disruption of the insulin receptor (IR) in non-neuronal tissues of adult mice on the lifespan. We induced hemizygous (PerIRKO+/- ) or homozygous (PerIRKO-/- ) disruption of the IR in peripheral tissue of 15-weeks-old mice using a tamoxifen-inducible Cre transgenic mouse with only peripheral tissue expression, and subsequently monitored glucose metabolism, insulin signalling and spontaneous death rates over 4 years. Complete peripheral IR disruption resulted in a diabetic phenotype with increased blood glucose and plasma insulin levels in young mice. Although blood glucose levels returned to normal, and fat mass was reduced in aged PerIRKO-/- mice, their lifespan was reduced. By contrast, heterozygous disruption had no effect on lifespan. This was despite young male PerIRKO+/- mice showing reduced fat mass and mild increase in hepatic insulin sensitivity. In conflict with findings in metazoans like Caenorhabditis elegans and Drosophila melanogaster, our results suggest that heterozygous impairment of the insulin signalling limited to peripheral tissues of adult mice fails to extend lifespan despite increased systemic insulin sensitivity, while homozygous impairment shortens lifespan.


Asunto(s)
Tejido Adiposo/metabolismo , Insulina/metabolismo , Longevidad/genética , Receptor de Insulina/genética , Transducción de Señal , Animales , Glucemia/metabolismo , Expresión Génica , Heterocigoto , Homocigoto , Integrasas/genética , Integrasas/metabolismo , Masculino , Ratones , Ratones Noqueados , Mutación , Receptor de Insulina/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA