Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 16(737): eadi0295, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38446903

RESUMEN

Anti-CD20 therapy to deplete B cells is highly efficacious in preventing new white matter lesions in patients with relapsing-remitting multiple sclerosis (RRMS), but its protective capacity against gray matter injury and axonal damage is unclear. In a passive experimental autoimmune encephalomyelitis (EAE) model whereby TH17 cells promote brain leptomeningeal immune cell aggregates, we found that anti-CD20 treatment effectively spared myelin content and prevented myeloid cell activation, oxidative damage, and mitochondrial stress in the subpial gray matter. Anti-CD20 treatment increased B cell survival factor (BAFF) in the serum, cerebrospinal fluid, and leptomeninges of mice with EAE. Although anti-CD20 prevented gray matter demyelination, axonal loss, and neuronal atrophy, co-treatment with anti-BAFF abrogated these benefits. Consistent with the murine studies, we observed that elevated BAFF concentrations after anti-CD20 treatment in patients with RRMS were associated with better clinical outcomes. Moreover, BAFF promoted survival of human neurons in vitro. Together, our data demonstrate that BAFF exerts beneficial functions in MS and EAE in the context of anti-CD20 treatment.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple Recurrente-Remitente , Humanos , Animales , Ratones , Neuroprotección , Encéfalo , Sustancia Gris , Presentación de Antígeno , Atrofia , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico
2.
Eur J Immunol ; 53(11): e2250033, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37624875

RESUMEN

Regulatory B cells (Bregs) are immunosuppressive cells that support immunological tolerance by the production of IL-10, IL-35, and TGF-ß. Bregs arise from different developmental stages in response to inflammatory stimuli. In that regard, mounting evidence points towards a direct influence of gut microbiota on mucosal B cell development, activation, and regulation in health and disease. While an increasing number of diseases are associated with alterations in gut microbiome (dysbiosis), little is known about the role of microbiota on Breg development and induction in neuroinflammatory disorders. Notably, gut-originating, IL-10- and IgA-producing regulatory plasma cells have recently been demonstrated to egress from the gut to suppress inflammation in the CNS raising fundamental questions about the triggers and functions of mucosal-originating Bregs in systemic inflammation. Advancing our understanding of Bregs in neuroinflammatory diseases could lead to novel therapeutic approaches. Here, we summarize the main aspects of Breg differentiation and functions and evidence about their involvement in neuroinflammatory diseases. Further, we highlight current data of gut-originating Bregs and their microbial interactions and discuss future microbiota-regulatory B cell-targeted therapies in immune-mediated diseases.


Asunto(s)
Linfocitos B Reguladores , Humanos , Interleucina-10 , Enfermedades Neuroinflamatorias , Inflamación , Diferenciación Celular
3.
Gut Microbes ; 14(1): 2147055, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36398902

RESUMEN

Mounting evidence points towards a pivotal role of gut microbiota in multiple sclerosis (MS) pathophysiology. Yet, whether disease-modifying treatments alter microbiota composition and whether microbiota shape treatment response and side-effects remain unclear. In this prospective observational pilot study, we assessed the effect of dimethyl fumarate (DMF) on gut microbiota and on host/microbial metabolomics in a cohort of 20 MS patients. Combining state-of-the-art microbial sequencing, metabolome mass spectrometry, and computational analysis, we identified longitudinal changes in gut microbiota composition under DMF-treatment and an increase in citric acid cycle metabolites. Notably, DMF-induced lymphopenia, a clinically relevant safety concern, was correlated with distinct baseline microbiome signatures in MS patients. We identified gastrointestinal microbiota as a key therapeutic target for metabolic properties of DMF. By characterizing gut microbial composition as a candidate risk factor for DMF-induced lymphopenia, we provide novel insights into the role of microbiota in mediating clinical side-effects.


Asunto(s)
Microbioma Gastrointestinal , Linfopenia , Esclerosis Múltiple , Humanos , Dimetilfumarato/efectos adversos , Esclerosis Múltiple/tratamiento farmacológico , Estudios Prospectivos , Linfopenia/inducido químicamente , Factores de Riesgo
4.
Nat Commun ; 13(1): 6777, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36351919

RESUMEN

Growing evidence links COVID-19 with acute and long-term neurological dysfunction. However, the pathophysiological mechanisms resulting in central nervous system involvement remain unclear, posing both diagnostic and therapeutic challenges. Here we show outcomes of a cross-sectional clinical study (NCT04472013) including clinical and imaging data and corresponding multidimensional characterization of immune mediators in the cerebrospinal fluid (CSF) and plasma of patients belonging to different Neuro-COVID severity classes. The most prominent signs of severe Neuro-COVID are blood-brain barrier (BBB) impairment, elevated microglia activation markers and a polyclonal B cell response targeting self-antigens and non-self-antigens. COVID-19 patients show decreased regional brain volumes associating with specific CSF parameters, however, COVID-19 patients characterized by plasma cytokine storm are presenting with a non-inflammatory CSF profile. Post-acute COVID-19 syndrome strongly associates with a distinctive set of CSF and plasma mediators. Collectively, we identify several potentially actionable targets to prevent or intervene with the neurological consequences of SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Humanos , Estudios Transversales , SARS-CoV-2 , Autoinmunidad , Estudios Prospectivos , Síndrome Post Agudo de COVID-19
5.
JCI Insight ; 7(12)2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35536649

RESUMEN

People living with multiple sclerosis (MS) experience episodic CNS white matter lesions instigated by autoreactive T cells. With age, patients with MS show evidence of gray matter demyelination and experience devastating nonremitting symptomology. What drives progression is unclear and studying this has been hampered by the lack of suitable animal models. Here, we show that passive experimental autoimmune encephalomyelitis (EAE) induced by an adoptive transfer of young Th17 cells induced a nonremitting clinical phenotype that was associated with persistent leptomeningeal inflammation and cortical pathology in old, but not young, SJL/J mice. Although the quantity and quality of T cells did not differ in the brains of old versus young EAE mice, an increase in neutrophils and a decrease in B cells were observed in the brains of old mice. Neutrophils were also found in the leptomeninges of a subset of progressive MS patient brains that showed evidence of leptomeningeal inflammation and subpial cortical demyelination. Taken together, our data show that while Th17 cells initiate CNS inflammation, subsequent clinical symptoms and gray matter pathology are dictated by age and associated with other immune cells, such as neutrophils.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Sustancia Gris/patología , Humanos , Inflamación , Ratones , Neutrófilos/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...