Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Forensic Sci Int ; 348: 111673, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37031011

RESUMEN

The use of organic peroxides for the preparation of homemade explosives (HMEs) is common among terrorists due to inexpensive precursor chemicals and simple synthetic procedures. Triacetone triperoxide (TATP) is the most notable peroxide explosive, and has been deployed in several terrorist attacks as explosive filling of improvised explosive devices (IEDs). Forensic identification of TATP in pre-blast and post-blast residues, including on-site analysis, poses significant analytical challenges and induces demand for practicable and sensitive detection techniques. This work presents a concept suitable for laboratory and on-site identification of TATP residues in liquid samples (aqueous TATP synthetic waste) and in gas phase. It is based on TATP enrichment from the aqueous or gas phase using different types of passive samplers (polydimethylsiloxane (PDMS) sampling rods and activated carbon sampling tubes (ACST)) and subsequent identification of the explosive by gas chromatography-mass spectrometry (GC-MS) or GC with positive chemical ionization and tandem MS (GC-PCI-MS/MS) analytical techniques. Additionally, investigation of the stability of TATP in aqueous solutions and of the stability of enriched TATP in passive samplers under different storage conditions, as well as development of TATP re-extraction procedures from passive samplers have been performed in this study. The practical use of passive samplers was demonstrated during and after TATP production processes. Moreover, post-blast sampling of TATP under different conditions of controlled blasting events was investigated using the passive sampling concept.

2.
Drug Test Anal ; 15(4): 408-425, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36541839

RESUMEN

Synthetic cannabinoid receptor agonists (SCRAs) are distributed on the drug market to produce THC-like effects while evading routine drug testing and legislation. The cyclobutylmethyl (CBM) and norbornylmethyl (NBM) side chain specifically circumvented the German legislation and led to the emergence of exploratory SCRAs in 2019-2021. The NBM SCRAs were detected post-amendment of the new psychoactive substances act in 2020, which scheduled all CBM SCRAs. All six SCRAs are full agonists at the cannabinoid receptor 1 compared with Δ9 -tetrahydrocannabinol and CP-55,940. The CBM SCRAs showed binding affinities of Ki : 29.4-0.65 nm and potencies of EC50 : 483-40.1 nm (CBMICA << CBMINACA < CBMeGaClone). The norbornyl derivatives exhibited high affinities (Ki : 1.87-0.25 nm), with indazole being the most affine. Functional activity data confirmed that the indazole derivative tends to be the most potent of all three NBM SCRAs (EC50 : 169-1.78 nm). The sterically demanding NBM side chain increased the affinity and activity of almost all core structures. Future studies should be conducted on similarly voluminous side chain moieties. The 'life cycle' of all SCRAs on the drug market was less than a year. Notably, Cumyl-CBMICA was the most prevalent while also having the weakest cannabimimetic properties. Quantification of Cumyl-CBMICA during peak consumption in late 2019 and early 2020 revealed an increase in the concentration on the herbal material, which, together with forum entries and blog posts, corroborates the low in vitro cannabimimetic properties. Seizure prevalence data indicate that almost all SCRAs continue to be identified in 2022, potentially due to remaining stocks.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Indazoles , Agonistas de Receptores de Cannabinoides/química , Prevalencia , Indazoles/farmacología , Alemania/epidemiología , Receptor Cannabinoide CB1
3.
Drug Test Anal ; 15(1): 84-96, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36136085

RESUMEN

Synthetic cathinones comprise psychostimulants with desired effects like euphoria, increased vigilance, appetite suppression, and-mainly depending on certain structural features-entactogenic properties. 3,4-EtPV (1-(bicyclo[4.2.0]octa-1,3,5-trien-3-yl)-2-(pyrrolidin-1-yl)pentan-1-one) was first mentioned in an online drug forum in September 2021, where its imminent synthesis was announced. The goal was to produce a legal alternative to the phenylethylamines already banned by the German NpSG. In February and June 2022, two samples labeled with the name and molecular structure of 3,4-EtPV were analyzed. The molecular structure of the obviously mislabeled compound was elucidated and comprehensively characterized within the ADEBAR project. The synthetic cathinone identified differed from the declared 3,4-EtPV by a 3,4-propylene bridge instead of a 3,4-ethylene bridge and a piperidine ring instead of a pyrrolidine ring. The short name 3,4-Pr-PipVP (3,4-propylene-2-(1-piperidinyl)valerophenone) was suggested as a semisystematic name in collaboration with the European Monitoring Centre for Drugs and Drug Addiction. Herein, the results of the analyses are discussed and will enable forensic laboratories to update their databases quickly and identify 3,4-Pr-PipVP confidently. 3,4-Pr-PipVP is already scheduled under the German NpSG. This study highlights that there are ongoing efforts to deliberately circumvent generic definitions given, for example, in the German NpSG and that (unintentional?) mislabeling can be an issue. The end user purchasing substances online can never be sure that the material actually supplied will be the one ordered, and he might receive an illicit drug instead of an uncontrolled one. Furthermore, the purity is always unknown, creating health risks due to unexpected effects and potencies.


Asunto(s)
Alcaloides , Drogas Ilícitas , Masculino , Humanos , Cathinona Sintética , Psicotrópicos/química , Alcaloides/análisis , Drogas Ilícitas/química
4.
Drug Test Anal ; 14(8): 1491-1502, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35524160

RESUMEN

Novel substances for which none or limited analytical data are available constitute a challenge for police and customs forensic laboratories. The time-consuming process of structural elucidation and acquisition of analytical data has been centralized in the ADEBAR project in Germany, co-funded since 2017 by the EU's Internal Security Fund. The project aims to comprehensively characterize substances relevant for forensic-toxicological casework within the analytical competence network. The analytical datasets are distributed digitally through European and (inter)national channels. Additionally, pharmacological evaluation allows for estimating in vivo potency and potential harm required as scientific evidence for legislative amendments. The ADEBAR project contributes to the availability of analytical data on new substances relevant to the daily work of police and customs laboratories. Since the inception of the ADEBAR project, 549 samples have been registered, and 302 substance reports notified to the EMCDDA, including numerous spectrometric and spectroscopic data. In addition, 3,619 mass spectra have been accumulated in ADEBAR mass spectra databases. A central institution for the structure elucidation and acquisition of valid, high-quality analytical data for police and customs forensic laboratories and forensic medicine institutes is important in the future because there does not seem to be an end to the dynamic of novel NPS appearing on the drug market.


Asunto(s)
Psicotrópicos , Toxicología Forense , Alemania , Espectrometría de Masas , Psicotrópicos/análisis , Análisis Espectral
5.
Drug Test Anal ; 14(8): 1387-1406, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35338591

RESUMEN

New chemical moieties continue to appear in synthetic cannabimimetics (SC), the largest group of new psychoactive substances in the EU. We describe the first comprehensive characterisation of the novel SC Cumyl-Tosyl-Indazole-3-Carboxamide (Cumyl-TsINACA) (N-[2-phenylpropan-2-yl]-1-tosyl-1H-indazole-3-carboxamide) from seized case samples. Structure elucidation was performed within the EU-project ADEBAR plus to facilitate confident identification by other researchers and practitioners worldwide. Characteristic MS fragmentations include the cleavage of the sulfonamide bond (S-N), the aryl sulfone bond (C-S) and the elimination rearrangement of SO2 in the side chain. Cumyl-TsINACA is a full receptor agonist at hCB1 (Emax  = 228%) with very weak binding affinity (Ki  = 292 nm) and low functional activity (EC50  = 31 µm). Thermal degradation of Cumyl-TsINACA was observed under GC conditions. The degree to which the tosyl side chain is cleaved due to pyrolysis primarily depends on solvent, the use of glass wool in the liner and injector temperature. The determination of the constitution by NMR spectroscopy was ambiguous due to the high number of neighbouring, non-proton-bearing atoms. Therefore, other possible structures compatible with the NMR correlations were generated using the WebCocon software. The unambiguous structural evidence was finally obtained by spectra comparison after the synthesis of Cumyl-TsINACA. The low thermal stability, as well as the low affinity and potency, renders this compound unfavourable for the use as a psychoactive substance. Thus, we do not expect widespread adoption of this SC.


Asunto(s)
Cannabinoides , Indazoles , Cannabinoides/metabolismo , Alemania , Indazoles/química , Espectroscopía de Resonancia Magnética
6.
Drug Test Anal ; 14(3): 450-461, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35048551

RESUMEN

The established approaches of suspect and nontarget screening (NTS) using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) are usually applied in the field of environmental and bioanalytical analysis. Herein, these approaches were employed on a forensic-toxicological application by analyzing different production waste samples from controlled amphetamine synthesis via Leuckart route to evaluate the suitability of this methodology for identification of route-specific organic substances in such waste samples. For analysis, two complementary LC techniques were used to cover a broad polarity spectrum. After data processing and peak picking using the enviMass software and further manual data restriction, 17 features were tentatively identified as suspects, three of which were subsequently identified with reference substances. All suspects had been previously identified in studies, in which gas chromatography-mass spectrometry (GC-MS) was successfully applied for synthesis marker assessment in waste and amphetamine samples. Remaining features with high signal intensity and assigned sum formula were selected for the attempt of structure elucidation. Seven potential synthesis markers were tentatively identified, which were not yet reported, except the sum formula of one compound, and which were partly also detected in real case waste samples afterward. The innovative application of the NTS approach using LC-HRMS for the analysis of aqueous amphetamine synthesis waste samples showed its suitability as extension to GC-MS analysis as it was possible to successfully identify seven new potential marker compounds, which are specific either for the conversion of the pre-precursors α-phenylacetoacetonitrile and α-phenylacetoacetamide to benzyl methyl ketone or for the subsequent Leuckart synthesis route after their conversion.


Asunto(s)
Anfetamina , Anfetamina/análisis , Cromatografía Liquida , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masas
7.
Drug Test Anal ; 13(10): 1758-1767, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34272823

RESUMEN

Since their first appearance in 2008, synthetic cannabinoid receptor agonists (SCRAs) remain the most popular new psychoactive substances (NPS) in the EU. Following consumption, these drugs and their metabolites are urinary excreted and enter the sewage system enabling the application of wastewater-based epidemiology (WBE). Knowing the fate of target analytes in sewage water is essential for successful application of WBE. This study investigates the stability of several chemically diverse SCRAs and selected human metabolites under sewage conditions utilizing a combination of liquid chromatography-tandem mass spectrometry and high-resolution mass spectrometry (HRMS). Target analytes included SCRAs with indole (5F-PB-22, PB-22 pentanoic acid), indazole (AMB-FUBINACA, 5F-ADB, 5F-ADB dimethylbutanoic acid), carbazole (MDMB-CHMCZCA, EG-018), and γ-carboline (Cumyl-PeGaClone) chemical core structures representing most of the basic core structures that have occurred up to now. Stability tests were performed using wastewater effluent containing 5% activated sludge as inoculum to monitor degradation processes and formation of transformation products (TPs). The majority of investigated SCRAs, excluding the selected human metabolites, was recalcitrant to microbial degradation in sewage systems over a period of 29 days. Their stability was rather controlled by physico-chemical processes like sorption and hydrolysis. Considering a typical hydraulic in-sewer retention time of 24 h, the concentration of AMB-FUBINACA decreased by 90% thus representing the most unstable SCRA investigated in this study. Among the 10 newly identified TPs, three could be considered as relevant markers and should be included into future WBE studies to gain further insight into use and prevalence of SCRAs on the drug market.


Asunto(s)
Agonistas de Receptores de Cannabinoides/análisis , Aguas del Alcantarillado/análisis , Agonistas de Receptores de Cannabinoides/metabolismo , Cromatografía Liquida/métodos , Humanos , Espectrometría de Masas/métodos , Espectrometría de Masas en Tándem/métodos , Monitoreo Epidemiológico Basado en Aguas Residuales
8.
Drug Test Anal ; 13(8): 1499-1515, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33788409

RESUMEN

Synthetic cannabinoids (SCs) represent a large group of new psychoactive substances (NPS), sustaining a high prevalence on the drug market since their first detection in 2008. Cumyl-CBMICA and Cumyl-CBMINACA, the first representatives of a new subclass of SCs characterized by a cyclobutyl methyl (CBM) moiety, were identified in July 2019 and February 2020. This work aimed at evaluating basic pharmacological characteristics and human Phase I metabolism of these compounds. Human Phase I metabolites were tentatively identified by liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QToF-MS) of urine samples and confirmed by a pooled human liver microsome (pHLM) assay. The basic pharmacological evaluation was performed by applying a competitive ligand binding assay and a functional activation assay (GTPγS) using cell membranes carrying the human cannabinoid receptor 1 (hCB1 ). Investigation of the human Phase I metabolism resulted in the identification of specific urinary markers built by monohydroxylation or dihydroxylation. Although Cumyl-CBMICA was primarily hydroxylated at the indole ring, hydroxylation of Cumyl-CBMINACA mainly occurred at the CBM moiety. Both substances acted as agonists at the hCB1 receptor, although substantial differences could be observed. Cumyl-CBMINACA showed higher binding affinity (Ki = 1.32 vs. 29.3 nM), potency (EC50 = 55.4 vs. 497 nM), and efficacy (Emax = 207% vs. 168%) than its indole counterpart Cumyl-CBMICA. This study confirms that substitution of an indole by an indazole core tends to increase in vitro potency, which is potentially reflected by higher in vivo potency. The emergence and disappearance of SCs distributed via online shops carrying a CBM moiety once more demonstrate the "cat-and-mouse" game between manufacturers and legislation.


Asunto(s)
Cannabinoides/química , Cannabinoides/metabolismo , Receptor Cannabinoide CB1/metabolismo , Biotransformación , Agonistas de Receptores de Cannabinoides/farmacología , Cannabinoides/orina , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Hidroxilación , Drogas Ilícitas , Indazoles/química , Indazoles/metabolismo , Indoles/química , Indoles/metabolismo , Microsomas Hepáticos , Receptor Cannabinoide CB1/agonistas
9.
Data Brief ; 39: 107628, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34988267

RESUMEN

Synthetic cannabimimetics (SC) are a diverse group of new psychoactive substances with varying potency and harm potential. New SCs appear on the drug market every year, and reliable and correct identification of these new derivatives independent from the matrix relies on the availability of verified spectra. Three new synthetic cannabimimetics featuring a norbornyl methyl side chain and varying core structure elements were identified in different seizures and forms. Cumyl-BC[2.2.1]HpMeGaClone and Cumyl-BC[2.2.1]HpMINACA were laced onto herbal blends, whereas Cumyl-BC[2.2.1]HpMICA was seized as a pure solid powder. The data collection process involves a comprehensive set of orthogonal analytical techniques allowing for the unambiguous identification of the respective endo- and exo-isomers. Furthermore, the diversity of analytical techniques allows a greater number of laboratories working in the field of forensic chemistry to confidently identify the substances described in our original research article [1]. Structure elucidation and analytical characterisation were performed within the EU-project ADEBAR plus using gas chromatography-mass spectrometry (GC-MS), gas chromatography-solid state infrared spectroscopy (GC-sIR), as well as solid and neat IR spectroscopy, Raman spectroscopy, liquid chromatography-electrospray ionisation-mass spectrometry (LC-ESI-MS), and high resolution (HR)-LC-ESI-MS, and nuclear magnetic resonance (NMR) spectroscopy. The raw analytical data files are included in the Mendeley repository alongside the individual spectra in a universally importable format. The use of the universal JCAMP format for storage of the spectra facilitates database maintenance and enables seamless integration of the verified spectra. Thus, the dataset enables other researchers worldwide to identify these three new SCs confidently.

10.
Drug Test Anal ; 13(1): 208-216, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33037749

RESUMEN

Since the beginning of the phenomenon of new psychoactive substances (NPS), synthetic cannabinoid receptor agonists (SCRAs) have been the largest and most prevalent subclass of these drugs in Europe. Many countries implemented specific legislation scheduling classes of substances defined on the basis of their chemical structure to reduce supply. We describe the identification and analytical characterization within the EU project ADEBAR plus of 1-(cyclobutylmethyl)-N-(2-phenylpropan-2-yl)-1H-indole-3-carboxamide which resulted in the formal notification through the Early Warning System of the European Monitoring Centre for Drug and Drug Addiction (EMCDDA). This is the first identification of this new SCRA worldwide and the analytical data was distributed (inter-)nationally right after identification in 2019. First, the substance was isolated from the herbal material using preparative high-performance liquid chromatography (HPLC). Structure elucidation and analytical characterization were performed using gas chromatography-mass spectrometry (GC-MS), gas chromatography-solid state infrared spectroscopy (GC-sIR), liquid chromatography-electrospray ionization-quadrupole time of flight-mass spectrometry (LC-ESI-qToF-MS), Raman spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. The new compound contains a cyclobutyl methyl group as a side chain and has not been described in any patent to our knowledge. Based on the semisystematic nomenclature of SCRAs, we propose Cumyl-CBMICA as a short name for the compound.


Asunto(s)
Agonistas de Receptores de Cannabinoides/análisis , Drogas Ilícitas/análisis , Cromatografía Líquida de Alta Presión , Cromatografía de Gases y Espectrometría de Masas , Plantas Medicinales/química , Espectrometría Raman
11.
Gene ; 760: 145021, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32763489

RESUMEN

Human B cell activating factor (TNFSF13B, BAFF) is a tumor necrosis factor superfamily member. Binding its unique receptor (TNFRSF13C, BAFF-R) mediates gene expression and cell survival in B cells via activation of NFκB pathway. Furthermore, there is data indicating a role in T cell function. A functionally inhibitory isoform (ΔBAFF) resulting from the deletion of exon 3 in the TNFSF13B pre-RNA has already been reported. However, data on the complexity of post-transcriptional regulation is scarce. Here, we report molecular cloning of nine TNFSF13B transcript variants resulting from alternative splicing of the TNFSF13B pre-mRNA including BAFFX1. This variant is characterized by a partial retention of intron 3 of the TNFSF13B gene causing the appearance of a premature stop codon. We demonstrate the expression of the corresponding BAFFX1 protein in Jurkat T cells, in ex vivo human immune cells and in human tonsillar tissue. Thereby we contribute to the understanding of TNFSF13B gene regulation and reveal that BAFF is regulated through a post-transcriptional mechanism to a greater extent than reported to date.


Asunto(s)
Factor Activador de Células B/genética , Factor Activador de Células B/inmunología , Empalme Alternativo/genética , Factor Activador de Células B/metabolismo , Linfocitos B/metabolismo , Exones , Expresión Génica , Humanos , FN-kappa B/metabolismo , Isoformas de Proteínas/genética , Precursores del ARN/metabolismo , Linfocitos T/metabolismo , Factor de Necrosis Tumoral alfa/genética
12.
Anal Chim Acta ; 1108: 129-141, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32222234

RESUMEN

In this study, we utilized elemental analyser (EA) and gas-chromatography (GC) isotope ratio mass spectrometry (IRMS) and ultra-high-performance liquid chromatography coupled to mass spectrometry (UHPLC-MS) in a comprehensive profiling approach assessing the chromatographic impurity signatures and δ13C and δ15N isotope ratios of synthetic cannabinoids from police seizures and internet test purchases. Main target of this study was the highly prevalent synthetic cannabinoid MDMB-CHMICA (methyl (2S)-2-([1-(cyclohexylmethyl)-1H-indol-3-yl]formamido)-3,3-dimethylbutaoate). Overall, 61 powder and 118 herbal blend (also called "Spice-Products") samples were analysed using both analytical techniques and evaluated in a joint model to link samples from a common source. As a key finding, three agglomerates of Spice-product samples with similar dates of purchase were identified in the IRMS data, possibly representing larger shipments of MDMB-CHMICA, each produced with the same precursor material, successively delivered to the European market. The three agglomerates were refined into multiple sub-clusters based on the impurity profiling data, each representing an individual synthesis batch. One of the agglomerates identified in the IRMS data was found to consist two groups of four sub-clusters, respectively, with majorly different impurity profiles, demonstrating the necessity for both analytical techniques to extract the maximum amount of information from a limited sample pool. Additionally, 31 samples containing the recently surfaced synthetic cannabinoid Cumyl-PeGaClone (5-pentyl-2-(2-phenylpropan-2-yl)-2,5-dihydro-1H-pyrido[4,3-b]indol-1-one) were analysed for their and δ13C and δ15N isotope ratios to put the isotopic data recorded for MDMB-CHMNICA in a more global perspective. Three building blocks of precursor chemicals (indole, tert-leucine, cumylamine) potentially used for the synthesis of the two named synthetic cannabinoids were acquired from different global vendors and measured for their δ13C and δ15N isotope ratios to better understand variations in the isotopic composition of the synthetic cannabinoids and to trace their origin.

13.
Drug Test Anal ; 12(1): 78-91, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31476105

RESUMEN

In June 2018, a 'research chemica'l labeled 'AB-FUB7AICA' was purchased online and analytically identified as 5F-AB-P7AICA, the 7-azaindole analog of 5F-AB-PINACA. Here we present data on structural characterization, suitable urinary consumption markers, and preliminary pharmacokinetic data. Structure characterization was performed by nuclear magnetic resonance spectroscopy, gas chromatography-mass spectrometry, infrared and Raman spectroscopy. Phase I metabolites were generated by applying a pooled human liver microsome assay (pHLM) to confirm the analysis results of authentic urine samples collected after oral self-administration of 2.5 mg 5F-AB-P7AICA. Analyses of pHLM and urine samples were performed by liquid chromatography-time-of-flight mass spectrometry and liquid chromatography-tandem mass spectrometry (LC-MS/MS). An LC-MS/MS method for the quantification of 5F-AB-P7AICA in serum was validated. Ten phase I metabolites were detected in human urine samples and confirmed in vitro. The main metabolites were formed by hydroxylation, amide hydrolysis, and hydrolytic defluorination, though - in contrast with most other synthetic cannabinoids - the parent compound showed the highest signals in most urine samples. The compound detection window was more than 45 hours in serum. The concentration-time profile was best explained by a two-phase pharmacokinetic model. 5F-AB-P7AICA was detected in urine samples until 65 hours post ingestion. Monitoring of metabolite M07, hydroxylated at the alkyl chain, next to parent 5F-AB-P7AICA, is recommended to confirm the uptake of 5F-AB-P7AICA in urinalysis. It seems plausible that the shift of the nitrogen atom from position 2 to 7 (e.g. 5F-AB-PINACA to 5F-AB-P7AICA) leads to a lower metabolic reactivity, which might be of general interest in medicinal chemistry.


Asunto(s)
Cannabinoides/metabolismo , Drogas Ilícitas/metabolismo , Indoles/metabolismo , Microsomas Hepáticos/metabolismo , Adulto , Cannabinoides/sangre , Cannabinoides/orina , Cromatografía Liquida/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Drogas Ilícitas/sangre , Drogas Ilícitas/orina , Indoles/sangre , Indoles/orina , Masculino , Datos Preliminares , Detección de Abuso de Sustancias/métodos , Espectrometría de Masas en Tándem/métodos
14.
Drug Test Anal ; 12(1): 119-126, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31307120

RESUMEN

Vaping of synthetic cannabinoids via e-cigarettes is growing in popularity. In the present study, we tentatively identified 12 by-products found in a pure sample of the synthetic cannabinoid Cumyl-5F-PINACA (1-(5-fluoropentyl)-N-(2-phenylpropan-2-yl)-1H-indazole-3-carboxamide), a prevalent new psychoactive substance (NPS) in e-liquids, via high-resolution mass spectrometry fragmentation experiments (HRMS/MS). Furthermore, we developed a procedure to reproducibly extract this synthetic cannabinoid and related by-products from an e-liquid matrix via chloroform and water. The extracts were submitted to flash chromatography (F-LC) to isolate the by-products from the main component. The chromatographic impurity signature was subsequently assessed by ultra-high-performance liquid chromatography coupled to mass spectrometry (UHPLC-MS) and evaluated by automated integration. The complete sample preparation sequence (F-LC + UHPLC-MS) was validated by comparing the semi-quantitative signal integrals of the chromatographic impurity signatures of five self-made e-liquids with varying concentrations of Cumyl-5F-PINACA [0.1, 0.2, 0.5, 0.7 and 1.0% (w/w)], giving an average relative standard deviation of 6.2% for triplicate measurements of preparations of the same concentration and 10.5% between the measurements of the five preparations with different concentrations. Lastly, the chromatographic signatures of 14 e-liquid samples containing Cumyl-5F-PINACA from police seizures and Internet test purchases were evaluated via hierarchical cluster analysis for potential links. For the e-liquid samples originating from test purchases, it was found that the date of purchase, the identity of the online shop, and the brand name are the critical factors for clustering of samples.


Asunto(s)
Cannabinoides/análisis , Drogas Ilícitas/análisis , Indazoles/análisis , Psicotrópicos/análisis , Cromatografía Líquida de Alta Presión/métodos , Contaminación de Medicamentos , Sistemas Electrónicos de Liberación de Nicotina , Halogenación , Espectrometría de Masas/métodos , Análisis Multivariante
15.
Drug Test Anal ; 12(1): 41-52, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31471943

RESUMEN

The pre-precursor market and the clandestine production of amphetamine-type stimulants (ATS) has become more diverse in recent years. Besides α-phenylacetoacetonitrile (APAAN) and α-phenylacetoacetamide (APAA), glycidic acid derivatives and methyl α-phenylacetoacetate (MAPA) are gaining importance. This conclusion is based on seizure data of police and customs. However, analytical data are needed to confirm and quantify the actual prevalence of new pre-precursors by elucidating the percentage of seized ATS that have been produced from them. A recent study showed that APAAN use is currently declining, which supports the view that new pre-precursors are being used. In this study, several conversion procedures using different batches of glycidic acid derivatives and a complete Leuckart reaction to produce amphetamine were carried out. The resulting organic phases were analyzed using gas chromatography - mass spectrometry to identify possible marker compounds. Three marker compounds were discovered and characterized using mass spectra and nuclear magnetic resonance spectroscopy. They were identified as phenyl-1-propanone, N-(1-phenylpropyl)formamide and 1-phenylpropan-1-amine. Their prevalence was investigated by searching the markers in an amphetamine impurity profiling database to determine to what extent they occurred in amphetamine samples from recent years. Data from the central German amphetamine profiling database of more than 250 cases were used for this purpose. The yearly occurrence of the three glycidate marker compounds was determined going back as far as 2009, revealing an increasing trend from 2016 on. This article presents experimental proof that APAAN is currently being replaced by other pre-precursors, such as glycidic acid derivatives.


Asunto(s)
Anfetaminas/química , Estimulantes del Sistema Nervioso Central/química , Compuestos Epoxi/química , Propionatos/química , Anfetaminas/síntesis química , Estimulantes del Sistema Nervioso Central/síntesis química , Técnicas de Química Sintética , Bases de Datos Farmacéuticas , Contaminación de Medicamentos , Compuestos Epoxi/síntesis química , Cromatografía de Gases y Espectrometría de Masas , Espectroscopía de Resonancia Magnética , Propionatos/síntesis química
16.
Drug Test Anal ; 12(4): 465-471, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31846172

RESUMEN

Due to the much lower production costs but similar effects to lysergic acid diethylamide (LSD), phenethylamine derivatives are sold as a cheaper replacement or deceptively as LSD itself. These potent hallucinogenic substances can lead to severe intoxication, thus a more profound understanding of their use is required. This includes the elucidation of the manufacturing processes for the commonly used blotter papers and the assessment of the risk of overdosing because of a heterogeneous distribution on the blotter papers. Besides the rapid detection of the analytes, the manufacturing process was elucidated by three different imaging techniques and liquid chromatography-mass spectrometry (LC-MS). A blotter paper sample, containing the two hallucinogenic phenethylamine derivatives 25I-NBOMe and 25C-NBOMe, was analyzed by complementary techniques such as micro x-ray fluorescence (µXRF), laser ablation (LA)-inductively coupled plasma-optical emission spectroscopy (ICP-OES), matrix assisted laser desorption ionization (MALDI)-MS, and with LC-MS after extraction. Using the signal from chlorine and iodine within the compounds, µXRF proved to be the fastest, cheapest and easiest method for identification, requiring no sample preparation at all. LA-ICP-OES provided three-dimensional information of the elements in the blotter paper. These results helped to confirm the assumption that manufacturers spray the compounds onto the paper. Whereas µXRF and LA-ICP-OES detected signals for chlorine and iodine, MALDI-MS-imaging showed the molecular distribution of both analytes. LC-MS analyses as a complementary method support the imaging results. Quantitative results for different drug hotspots revealed a heterogeneous distribution of the drugs on the blotter paper implying an inherent risk of overdosing for consumers.


Asunto(s)
Bencilaminas/análisis , Dimetoxifeniletilamina/análogos & derivados , Alucinógenos/análisis , Papel , Fenetilaminas/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Cromatografía Líquida de Alta Presión/métodos , Dimetoxifeniletilamina/análisis , Dietilamida del Ácido Lisérgico/análogos & derivados
17.
Drug Test Anal ; 11(8): 1192-1206, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31124282

RESUMEN

In this work, the most discriminating synthesis-related impurities found in samples from seizures and controlled synthesis of the synthetic cannabinoid MDMB-CHMICA (methyl (S)-2-(1-(cyclohexylmethyl)-1H-indole-3-carboxamido)-3,3-dimethylbutanoate) were characterized. Based on 61 available powder samples of MDMB-CHMICA, 15 key-impurities were assessed, isolated in larger quantities via flash chromatography and structurally elucidated and characterized via high resolution mass spectrometry and nuclear magnetic resonance spectroscopy. Apart from verifying the relation of the impurities to the major component, the interpretation of their chemical structures with distinct structural elements provided first insights into the manufacturing process and the precursor compounds used. Following liquid chromatography mass spectrometry analysis of the 15 key-impurities, the 61 seized samples of MDMB-CHMICA were evaluated and classified via multivariate data analysis based on the corresponding relative peak areas. In a second part of this work, stability tests and multiple controlled syntheses of MDMB-CHMICA were carried out to better understand variations in impurity signatures and to assess the significance of variations in the impurity patterns of seized samples. The last coupling step of the amino acid with 1-(cyclohexylmethyl)-1H-indole-3-carboxylic acid was performed using the coupling agents oxalyl chloride, thionyl chloride, and HATU. Furthermore, the impact of reaction time and temperature on the impurity profile were investigated. Overall, eight new impurities were found in the controlled syntheses and two degradation products of MDMB-CHIMCA were found in the course of the stability tests. Replicates of a synthesis conducted on the same day showed similar impurity signatures; on different days they showed discriminable signatures. The use of different coupling reagents or conditions gave clearly distinguishable impurity signatures.


Asunto(s)
Cannabinoides/química , Drogas Ilícitas/química , Indoles/química , Cannabinoides/síntesis química , Cromatografía Líquida de Alta Presión , Contaminación de Medicamentos , Estabilidad de Medicamentos , Tráfico de Drogas , Drogas Ilícitas/síntesis química , Indoles/síntesis química , Espectrometría de Masas en Tándem
18.
Anal Chem ; 90(17): 10559-10567, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30079731

RESUMEN

In this paper we present a new, versatile workflow for a synthesis impurity profiling concept, using the combination of flash chromatography (F-LC), liquid chromatography coupled to mass spectrometry (LC-MS), and multivariate data analysis. For three highly pure, structurally different synthetic cannabinoids, we demonstrate that via F-LC more than 99% of the main component (API) can be removed from a sample to enrich present impurities and yield combined fractions of targeted synthesis impurities with reproducible chromatographic signatures via LC-MS. The maximum overall relative standard deviation (RSD) of the complete experimental procedure for isolation and measurement of the impurity profiles (FL-C + LC-MS) was found to be 13.8% on average. The impurity signatures of 40 1 kg samples of MDMB-CHMICA (methyl ( S)-2-(1-(cyclohexylmethyl)-1 H-indole-3-carboxamido)-3,3-dimethylbutanoate) from one large seizure by Luxembourg customs were assessed via UHPLC-MS and compared via principle component analysis (PCA) to possibly discriminate between individual synthesis pathways or production batches and to deduce batch sizes. Three of these 40 samples could be identified as outliers, i. a., as a result of a highly abundant impurity with m/ z 498, isolated via F-LC and identified as methyl 2-(2-(1-(cyclohexylmethyl)-1 H-indole-3-carboxamido)-3,3-dimethylbutanamido)-3,3-dimethylbutanoate, most probably manufactured with a varying synthesis pathway. The remaining 37 samples were subdivided via PCA and hierarchical cluster analysis into five clusters between five and ten samples, representing a maximum possible batch size of 10 kg of pure MDMB-CHMICA. Furthermore, the profiling concept was successfully applied to self-produced and seized "spice-products" to extract impurity profiles of MDMB-CHMICA without any ion suppression or chemical interference.


Asunto(s)
Cannabinoides/análisis , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Drogas Ilícitas/análisis , Indoles/análisis , Espectrometría de Masas/métodos , Preparaciones Farmacéuticas/análisis , Análisis Multivariante , Análisis de Componente Principal
19.
Drug Test Anal ; 10(9): 1368-1382, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29669395

RESUMEN

Chemical waste from the clandestine production of amphetamine is of forensic and environmental importance due to its illegal nature which often leads to dumping into the environment. In this study, 27 aqueous amphetamine waste samples from controlled Leuckart reactions performed in Germany, the Netherlands, and Poland were characterised to increase knowledge about the chemical composition and physicochemical characteristics of such waste. Aqueous waste samples from different reaction steps were analysed to determine characteristic patterns which could be used for classification. Conductivity, pH, density, ionic load, and organic compounds were determined using different analytical methods. Conductivity values ranged from 1 to over 200 mS/cm, pH values from 0 to 14, and densities from 1.0 to 1.3 g/cm3 . A capillary electrophoresis method with contactless conductivity detection (CE-C4 D) was developed and validated to quantify chloride, sulphate, formate, ammonium, and sodium ions which were the most abundant ions in the investigated waste samples. A solid-phase extraction sample preparation was used prior to gas chromatography-mass spectrometry analysis to determine the organic compounds. Using the characterisation data of the known samples, it was possible to assign 16 seized clandestine waste samples from an amphetamine production to the corresponding synthesis step. The data also allowed us to draw conclusions about the synthesis procedure and used chemicals. The presented data and methods could support forensic investigations by showing the probative value of synthesis waste when investigating the illegal production of amphetamine. It can also act as starting point to develop new approaches to tackle the problem of clandestine waste dumping.


Asunto(s)
Anfetamina/análisis , Estimulantes del Sistema Nervioso Central/análisis , Drogas Ilícitas/química , Conductividad Eléctrica , Electroforesis Capilar , Cromatografía de Gases y Espectrometría de Masas , Alemania , Concentración de Iones de Hidrógeno , Indicadores y Reactivos , Países Bajos , Polonia , Extracción en Fase Sólida , Aguas Residuales/análisis
20.
Drug Test Anal ; 10(4): 671-680, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28857492

RESUMEN

α-Phenylacetoacetonitrile (APAAN) is one of the most important pre-precursors for amphetamine production in recent years. This assumption is based on seizure data but there is little analytical data available showing how much amphetamine really originated from APAAN. In this study, several syntheses of amphetamine following the Leuckart route were performed starting from different organic compounds including APAAN. The organic phases were analysed using gas chromatography-mass spectrometry (GC-MS) to search for signals caused by possible APAAN markers. Three compounds were discovered, isolated, and based on the performed syntheses it was found that they are highly specific for the use of APAAN. Using mass spectra, high resolution MS and nuclear magnetic resonance (NMR) data the compounds were characterised and identified as 2-phenyl-2-butenenitrile, 3-amino-2-phenyl-2-butenenitrile, and 4-amino-6-methyl-5-phenylpyrimidine. To investigate their significance, they were searched in data from seized amphetamine samples to determine to what extent they were present in illicitly produced amphetamine. Data of more than 580 cases from amphetamine profiling databases in Germany and the Netherlands were used for this purpose. These databases allowed analysis of the yearly occurrence of the markers going back to 2009. The markers revealed a trend that was in agreement with seizure reports and reflected an increasing use of APAAN from 2010 on. This paper presents experimental proof that APAAN is indeed the most important pre-precursor of amphetamine in recent years. It also illustrates how important it is to look for new ways to identify current trends in drug production since such trends can change within a few years.


Asunto(s)
Acetonitrilos/análisis , Anfetamina/análisis , Estimulantes del Sistema Nervioso Central/análisis , Drogas Ilícitas/análisis , Acetonitrilos/síntesis química , Anfetamina/síntesis química , Estimulantes del Sistema Nervioso Central/síntesis química , Bases de Datos Farmacéuticas , Contaminación de Medicamentos , Cromatografía de Gases y Espectrometría de Masas , Alemania , Drogas Ilícitas/síntesis química , Espectroscopía de Resonancia Magnética , Países Bajos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...