Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 15(2): e0226514, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32058999

RESUMEN

This paper introduces distributional regression also known as generalized additive models for location, scale and shape (GAMLSS) as a modeling framework for analyzing treatment effects beyond the mean. In contrast to mean regression models, GAMLSS relate each distributional parameter to covariates. Therefore, they can be used to model the treatment effect not only on the mean but on the whole conditional distribution. Since they encompass a wide range of different distributions, GAMLSS provide a flexible framework for modeling non-normal outcomes in which additionally nonlinear and spatial effects can easily be incorporated. We elaborate on the combination of GAMLSS with program evaluation methods including randomized controlled trials, panel data techniques, difference in differences, instrumental variables, and regression discontinuity design. We provide practical guidance on the usage of GAMLSS by reanalyzing data from the Mexican Progresa program. Contrary to expectations, no significant effects of a cash transfer on the conditional consumption inequality level between treatment and control group are found.


Asunto(s)
Interpretación Estadística de Datos , Estatus Económico/estadística & datos numéricos , Pobreza/estadística & datos numéricos , Bases de Datos Factuales , Humanos , México , Análisis de Regresión , Distribuciones Estadísticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA